ILC beam-parameters and New Physics

Mikael Berggren¹

¹DESY, Hamburg

LCWS, Beijing, 28 Mar 2010

Mikael Berggren (DESY)

ILC beam-parameters and New Physics

March 29, 2010 1 / 38

Outline

- The linear collider crash course.
- RDR \rightarrow SB2009
- Effects on NP
 - $\tilde{\tau}$ in SPS1a'.
 - SM Higgs recoil mass.
- Conclusions.

э

イロト イポト イヨト イヨト

The ideal linear collider

- Exactly known initial e^+e^- state.
- Fully polarised beams.
- As many events that you need at any E_{CMS}.
- Pure electron/positron beams.
- No background from the machine.
- No $\gamma\gamma$ background ...

< ロ > < 同 > < 回 > < 回 >

The real linear collider

- Beam energy has both initial and beam-beam induced spread.
- Low positron polarisation (~ 30 %), and < 100 % electron polarisation.
- Limited luminosity.
- Mixed lepton and photon beams.
- Huge number of low energy background particles from the machine.
- $\gamma\gamma$ background exists ...

< ロ > < 同 > < 回 > < 回 >

We need electrons and positrons:

- Electron source.
- Positron source.
- We need well defined beams:
 - Damping system.
- We need high energy:
 - Main linac.
- We need to get the beams to the detectors:
 - Beam delivery system.
 - Final focus.

- We need electrons and positrons:
 - Electron source.
 - Positron source.
- We need well defined beams:
 - Damping system.
- We need high energy:
 - Main linac.
- We need to get the beams to the detectors:
 - Beam delivery system.
 - Final focus.

- We need electrons and positrons:
 - Electron source.
 - Positron source.
- We need well defined beams:
 - Damping system.
- We need high energy:
 - Main linac.
- We need to get the beams to the detectors:
 - Beam delivery system.
 - Final focus.

- We need electrons and positrons:
 - Electron source.
 - Positron source.
- We need well defined beams:
 - Damping system.
- We need high energy:
 - Main linac.
- We need to get the beams to the detectors:
 - Beam delivery system.
 - Final focus.

Electron source.

• Polarised laser shining on photo-cathodes, specially designed to yield polarised electrons. Collect and pre-accelerate, then send to damping system.

Positron source.

- High (> 150 GeV) energy electron beam passes an *helical* undulator acting as a FEL, to produce high intensity, polarisation and energy (~ 10MeV) photons. These hit a rotating target to produce e⁺e⁻-pairs. Positrons are collected, pre-accelerated and sent to damping.
- Electrons are from the main beam → an additional energy dispersion, due to to the synchrotron radiation losses in the undulator.

- Electron source.
 - Polarised laser shining on photo-cathodes, specially designed to yield polarised electrons. Collect and pre-accelerate, then send to damping system.
- Positron source.
 - High (> 150 GeV) energy electron beam passes an *helical* undulator acting as a FEL, to produce high intensity, polarisation and energy (~ 10MeV) photons. These hit a rotating target to produce e⁺e⁻-pairs. Positrons are collected, pre-accelerated and sent to damping.
 - Electrons are from the main beam → an additional energy dispersion, due to to the synchrotron radiation losses in the undulator.

< 日 > < 同 > < 回 > < 回 > < 回 > <

Electron source.

- Polorized laser chining on photo acthodos, encoially designed to

イロト イポト イヨト イヨト

- Electron source.
 - Polarised laser shining on photo-cathodes, specially designed to yield polarised electrons. Collect and pre-accelerate, then send to damping system.
- Positron source.
 - High (> 150 GeV) energy electron beam passes an *helical* undulator acting as a FEL, to produce high intensity, polarisation and energy (~ 10MeV) photons. These hit a rotating target to produce e⁺e⁻-pairs. Positrons are collected, pre-accelerated and sent to damping.
 - Electrons are from the main beam → an additional energy dispersion, due to to the synchrotron radiation losses in the undulator.

< 日 > < 同 > < 回 > < 回 > < 回 > <

- Electron source.
 - Polarised laser shining on photo-cathodes, specially designed to yield polarised electrons. Collect and pre-accelerate, then send to damping system.
- Positron source.
 - ▲ High (> 150 GeV) energy electron hear passes an helical

Elements of the real collider: Damping system

- From the sources, the dispersion both in angle and energy are *way* to big.
- Send beams (now at $\sim 5~{\rm GeV})$ to rings where they pass "wigglers" making them cool off by synchrotron radiation.
- Kick out bunches, one-by-one, every ~ 100 ns to make the bunch train. Bunches are separated by a few ns, given by (circumference of damping ring)/(number of bunches).
- All this must be done in the 200 ms between bunch trains.
- The damping rings are at the centre of the complex: need to transport the bunches \sim 15 km to the start of the main linac after damping.

イロト イポト イヨト イヨト

Elements of the real collider: Damping system

- From the sources, the dispersion both in angle and energy are *way* to big.
- Send beams (now at $\sim 5~GeV$) to rings where they pass "wigglers" making them cool off by synchrotron radiation.
- Kick out bunches, one-by-one, every ~ 100 ns to make the bunch train. Bunches are separated by a few ns, given by (circumference of damping ring)/(number of bunches).
- All this must be done in the 200 ms between bunch trains.
- The damping rings are at the centre of the complex: need to transport the bunches \sim 15 km to the start of the main linac after damping.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The linear collider crash course

Elements of the real collider: Damping system

• From the sources, the dispersion both in angle and energy are

Elements of the real collider: Damping system

- From the sources, the dispersion both in angle and energy are *way* to big.
- Send beams (now at $\sim 5~GeV$) to rings where they pass "wigglers" making them cool off by synchrotron radiation.
- Kick out bunches, one-by-one, every ~ 100 ns to make the bunch train. Bunches are separated by a few ns, given by (circumference of damping ring)/(number of bunches).
- All this must be done in the 200 ms between bunch trains.
- The damping rings are at the centre of the complex: need to transport the bunches \sim 15 km to the start of the main linac after damping.

Elements of the real collider: Damping system

- From the sources, the dispersion both in angle and energy are *way* to big.
- Send beams (now at $\sim 5~GeV$) to rings where they pass "wigglers" making them cool off by synchrotron radiation.
- Kick out bunches, one-by-one, every ~ 100 ns to make the bunch train. Bunches are separated by a few ns, given by (circumference of damping ring)/(number of bunches).
- All this must be done in the 200 ms between bunch trains.
- The damping rings are at the centre of the complex: need to transport the bunches \sim 15 km to the start of the main linac after damping.

Elements of the real collider: Main linac

- Super-conducting RF cavities, 31.5 MV/m gradient.
- One RF unit = 3 cryo-units, 2 with 9 cavities, one with 8 cavities and a focusing quadropole.
- 278 of these in the positron linac, 282 in the electron one (more, since energy is lost in the undulator !)
- The linac needs *power*: Klystrons all along. How many particles one can get/time depends on how many of these one instals.

< ロ > < 同 > < 回 > < 回 >

Elements of the real collider: Main linac

- Super-conducting RF cavities, 31.5 MV/m gradient.
- One RF unit = 3 cryo-units, 2 with 9 cavities, one with 8 cavities and a focusing quadropole.
- 278 of these in the positron linac, 282 in the electron one (more, since energy is lost in the undulator !)
- The linac needs *power*: Klystrons all along. How many particles one can get/time depends on how many of these one instals.

Elements of the real collider: BDS and final focus

BDS:

- Last 2 km.
- Monitor and measure beam.
- Clean up beam-halo etc.
- Protect detectors.
- Anything the beam hits here will give secondaries (E_{beam} is up to 500 GeV!), that might hit the detectors.

Final focus:

• Last 20 m.

 Focuses beams to few 100 nm horizontally, and few nm vertically

・ロト ・聞 ト ・ ヨト ・ ヨト

Elements of the real collider: BDS and final focus

BDS:

- Last 2 km.
- Monitor and measure beam.
- Clean up beam-halo etc.
- Protect detectors.
- Anything the beam hits here will give secondaries (E_{beam} is up to 500 GeV!), that might hit the detectors.

Final focus:

- Last 20 m.
- Focuses beams to few 100 nm horizontally, and few nm vertically.

March 29, 2010 9 / 38

Due to the very strongly focused beams, the fields (both E and B) has a large bending power on the other beam. Consequences:

- Primary beam is focused by the other beam.
- Strong bending \rightarrow much synchrotron radiation. Widens the distribution of the primary e^{\pm} energy.
- Photons
 - ... get Compton-backscattered \rightarrow photon component of beam, long tail to lower energies for the e^{\pm} .
 - ... interact with photons (synchrotron ones, or virtual ones) in the other beam $\rightarrow e^{\pm}$ -pairs.
- So, there will be a component of e^{\pm} with the *opposite* charge to that of its parent beam.
- These gets de-focused: The pair background

Due to the very strongly focused beams, the fields (both E and B) has a large bending power on the other beam. Consequences:

- Primary beam is focused by the other beam.
- Strong bending → much synchrotron radiation. Widens the distribution of the primary e[±] energy.
- Photons
 - ... get Compton-backscattered \rightarrow photon component of beam, long tail to lower energies for the e^{\pm} .
 - ... interact with photons (synchrotron ones, or virtual ones) in the other beam $\rightarrow e^{\pm}$ -pairs.
- So, there will be a component of e^{\pm} with the *opposite* charge to that of its parent beam.
- These gets de-focused: The pair background

Due to the very strongly focused beams, the fields (both E and B) has a large bending power on the other beam. Consequences:

- Primary beam is focused by the other beam.
- Strong bending → much synchrotron radiation. Widens the distribution of the primary e[±] energy.
- Photons
 - ... get Compton-backscattered \rightarrow photon component of beam, long tail to lower energies for the e^{\pm} .
 - ... interact with photons (synchrotron ones, or virtual ones) in the other beam $\rightarrow e^{\pm}$ -pairs.
- So, there will be a component of e[±] with the *opposite* charge to that of its parent beam.
- These gets de-focused: The pair background

Due to the very strongly focused beams, the fields (both E and B) has a large bending power on the other beam. Consequences:

- Primary beam is focused by the other beam.
- Strong bending → much synchrotron radiation. Widens the distribution of the primary e[±] energy.
- Photons
 - ... get Compton-backscattered \rightarrow photon component of beam, long tail to lower energies for the e^{\pm} .
 - ... interact with photons (synchrotron ones, or virtual ones) in the other beam $\rightarrow e^{\pm}$ -pairs.
- So, there will be a component of e[±] with the *opposite* charge to that of its parent beam.
- These gets de-focused: The pair background

The wrong-sign e^{\pm} :s gets a maximum kick if they are at the outer edge of the beam.

The kick is independent of the (longitudinal) momentum of the particle.

 p_T and θ anti-correlates, and accumulate at the edge.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The wrong-sign e^{\pm} :s gets a maximum kick if they are at the outer edge of the beam.

The kick is independent of the (longitudinal) momentum of the particle.

 p_T and θ anti-correlates, and accumulate at the edge.

To study the effect, also draw the detector in these coordinates:

Place it at the p_T - θ corresponding to the p_T and θ a particle should have to turns back at the radius and z of the detector.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example: Pairs in ILD, RDR nominal parameters. Generated with GuineaPig. 124000 particles /BX.

< E

< 47 ▶

Luminosity(L) = Density of particles that pass each other per time-unit. Number of interactions/time= $L \times cross$ -section.

•
$$L = N^2/(t \times A)$$

- N²/t = (particles in bunch)²×(number of bunches in train)×(number of trains per second (="rep rate")) = n²N_{bunch}f_{rep}
- RF-power (*P_{RF}*)= *E_{cm}*(*nN_{bunch}f_{rep}*) × η (η= efficiency of transfer RF-system → beam)
- $L \propto P_{RF} n / AE_{cm}$
 - A = cross-section of beams at IP $\propto \sigma_x \times \sigma_y$
 - σ ∝ √εβ = √ε_{norm}β/γ. ε = emittance, ε_{norm}= normalised emittance = what the damping system achieves. β=focusing-power of the final focus system.

- Relative energy-loss due to beam-strahlung: $\delta_{BS} \propto (E_{cm}/\sigma_z) \times (n^2/(\sigma_x + \sigma_y)^2)$
- To reduce beam-strahlung: keep $\sigma_x + \sigma_y$ big.
- To get high $L : \sigma_x \times \sigma_y$ small.

Need a flat beam! $\sigma_y << \sigma_x \rightarrow \delta_{BS} \propto (E_{cm}/\sigma_z) \times (n^2/\sigma_x^2) \rightarrow n/\sigma_x \propto \sqrt{\delta_{BS}\sigma_z/E_{cm}}.$

So:

$$L \propto P_{RF} \times \sqrt{\delta_{BS}\sigma_z}/(\sigma_y E_{cm}^{3/2})$$

or
 $L \propto (nN_{bunch}f_{rep}) \times \sqrt{\delta_{BS}\sigma_z}/(\sigma_y E_{cm}^{1/2})$
or
 $L \propto (n^2N_{bunch}f_{rep})/(\sigma_x\sigma_y) \propto (n^2N_{bunch}f_{rep}E_{cm})/(\epsilon_{norm}\beta)$

- Relative energy-loss due to beam-strahlung: $\delta_{BS} \propto (E_{cm}/\sigma_z) \times (n^2/(\sigma_x + \sigma_y)^2)$
- To reduce beam-strahlung: keep $\sigma_x + \sigma_y$ big.

• To get high $L : \sigma_x \times \sigma_y$ small.

Need a flat beam! $\sigma_y << \sigma_x \rightarrow \delta_{BS} \propto (E_{cm}/\sigma_z) \times (n^2/\sigma_x^2) \rightarrow n/\sigma_x \propto \sqrt{\delta_{BS}\sigma_z/E_{cm}}.$

So:

$$L \propto P_{RF} \times \sqrt{\delta_{BS}\sigma_z}/(\sigma_y E_{cm}^{3/2})$$

or
 $L \propto (nN_{bunch}f_{rep}) \times \sqrt{\delta_{BS}\sigma_z}/(\sigma_y E_{cm}^{1/2})$
or
 $L \propto (n^2N_{bunch}f_{rep})/(\sigma_x\sigma_y) \propto (n^2N_{bunch}f_{rep}E_{cm})/(\epsilon_{norm}\beta)$

- Relative energy-loss due to beam-strahlung: $\delta_{BS} \propto (E_{cm}/\sigma_z) \times (n^2/(\sigma_x + \sigma_y)^2)$
- To reduce beam-strahlung: keep $\sigma_x + \sigma_y$ big.
- To get high $L : \sigma_x \times \sigma_y$ small.

Need a flat beam!

$$\sigma_y << \sigma_x \rightarrow \delta_{BS} \propto (E_{cm}/\sigma_z) \times (n^2/\sigma_x^2) \rightarrow n/\sigma_x \propto \sqrt{\delta_{BS}\sigma_z/E_{cm}}.$$

So:

$$L \propto P_{RF} \times \sqrt{\delta_{BS}\sigma_z}/(\sigma_y E_{cm}^{3/2})$$

or
 $L \propto (nN_{bunch}f_{rep}) \times \sqrt{\delta_{BS}\sigma_z}/(\sigma_y E_{cm}^{1/2})$
or
 $L \propto (n^2N_{bunch}f_{rep})/(\sigma_x\sigma_y) \propto (n^2N_{bunch}f_{rep}E_{cm})/(\epsilon_{norm}\beta)$

- Relative energy-loss due to beam-strahlung: $\delta_{BS} \propto (E_{cm}/\sigma_z) \times (n^2/(\sigma_x + \sigma_y)^2)$
- To reduce beam-strahlung: keep $\sigma_x + \sigma_y$ big.
- To get high $L : \sigma_x \times \sigma_y$ small.

Need a flat beam!

$$\sigma_y << \sigma_x \rightarrow \delta_{BS} \propto (E_{cm}/\sigma_z) \times (n^2/\sigma_x^2) \rightarrow n/\sigma_x \propto \sqrt{\delta_{BS}\sigma_z/E_{cm}}.$$

So:

$$L \propto P_{RF} \times \sqrt{\delta_{BS}\sigma_z} / (\sigma_y E_{cm}^{3/2})$$

or
 $L \propto (nN_{bunch}f_{rep}) \times \sqrt{\delta_{BS}\sigma_z} / (\sigma_y E_{cm}^{1/2})$
or
 $L \propto (n^2N_{bunch}f_{rep}) / (\sigma_x\sigma_y) \propto (n^2N_{bunch}f_{rep}E_{cm}) / (\epsilon_{norm}\beta)$

- Relative energy-loss due to beam-strahlung: $\delta_{BS} \propto (E_{cm}/\sigma_z) \times (n^2/(\sigma_x + \sigma_y)^2)$
- To reduce beam-strahlung: keep $\sigma_x + \sigma_y$ big.
- To get high $L : \sigma_x \times \sigma_y$ small.

Need a flat beam!

$$\sigma_y << \sigma_x \rightarrow \delta_{BS} \propto (E_{cm}/\sigma_z) \times (n^2/\sigma_x^2) \rightarrow n/\sigma_x \propto \sqrt{\delta_{BS}\sigma_z/E_{cm}}.$$

So:

$$L \propto P_{RF} \times \sqrt{\delta_{BS}\sigma_z} / (\sigma_y E_{cm}^{3/2})$$

or
 $L \propto (nN_{bunch}f_{rep}) \times \sqrt{\delta_{BS}\sigma_z} / (\sigma_y E_{cm}^{1/2})$
or
 $L \propto (n^2N_{bunch}f_{rep}) / (\sigma_x\sigma_y) \propto (n^2N_{bunch}f_{rep}E_{cm}) / (\epsilon_{norm}\beta)$
Aim of SB2009 : save cost, still full-filling the ILC scope document. In a nut-shell

- Single tunnel \rightarrow Re-think RF.
- Half power \rightarrow half as many bunches \rightarrow smaller damping rings.
- Keep (total) luminosity by squeezing beams.
- Move positron-source to end of linac → easier logistics, higher yield.

Aim of SB2009 : save cost, still full-filling the ILC scope document. In a nut-shell

- Single tunnel \rightarrow Re-think RF.
- Half power \rightarrow half as many bunches \rightarrow smaller damping rings.
- Keep (total) luminosity by squeezing beams.
- Move positron-source to end of linac → easier logistics, higher yield.

< 6 b

Main items for physics

Half RF power:

- The free parameter is *N*_{bunch}. Fringe benefit: Allows for smaller damping rings
- To keep L: decrease beam-size.
- But: . \rightarrow increases δ_{BS}
- Doubled luminosity/BX → doubled probability for a γγ event in the same BX.

• Undulator move :

- Lower lumi below 250 GeV.
- Higher energy-spread at 500 GeV.
- Lower positron polarisation at 500 GeV.

Main items for physics

- Half RF power:
 - The free parameter is *N*_{bunch}. Fringe benefit: Allows for smaller damping rings
 - To keep L: decrease beam-size.
 - But: . \rightarrow increases δ_{BS}
 - Doubled luminosity/BX → doubled probability for a γγ event in the same BX.
- Undulator move :
 - Lower lumi below 250 GeV.
 - Higher energy-spread at 500 GeV.
 - Lower positron polarisation at 500 GeV.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Main items for physics

- Half RF power:
 - The free parameter is *N*_{bunch}. Fringe benefit: Allows for smaller damping rings
 - To keep L: decrease beam-size.
 - But: . \rightarrow increases δ_{BS}
 - Doubled luminosity/BX \rightarrow doubled probability for a $\gamma\gamma$ event *in the same BX*.
- Undulator move :
 - Lower lumi below 250 GeV.
 - Higher energy-spread at 500 GeV.
 - Lower positron polarisation at 500 GeV.

Main items for physics

- Half RF power:
 - The free parameter is *N*_{bunch}. Fringe benefit: Allows for smaller damping rings
 - To keep L: decrease beam-size.
 - But: . \rightarrow increases δ_{BS}
 - Doubled luminosity/BX \rightarrow doubled probability for a $\gamma\gamma$ event *in the same BX*.
- Undulator move :
 - Lower lumi below 250 GeV.
 - Higher energy-spread at 500 GeV.
 - Lower positron polarisation at 500 GeV.

< ロ > < 同 > < 回 > < 回 >

- Twice as much beam-strahlung:
 - more overlayed tracks (real or fake)
 - Twice as much energy in BeamCal

At 500 GeV

- Total luminosity unchanged RDR→SB2009 w TF, but reduced by %25 for SB2009 w/o TF.
- *P*(*e*⁺) goes from 33 % to 22 %.
- Incoming energy-spread grows from 0.16 to 0.21 %.
- Luminosity within 1 % of nominal reduced from 0.83 to 0.72.

At 250 GeV

• Lumi reduced by a factor three.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Beam-strahlung: Hits in Vertex detector

- Full simulation (Mokka), with crossing-angle and anti-DID field.
- No reconstruction yet, just count hits.
- The ILD VTX integrates of a certain time-window → Many BX:es overlayed.

- Only GP, but with crossing-angle and anti-DID.
- Both hit-densities (top) and energy-density (bottom) matters.
- The issue: can one still see a \approx 250 GeV electron from a $\gamma\gamma$ process over the pairs-background?

- Distribution of particle energy for r > 20 mm.
- Total energy in BeamCal per BX: 24 TeV for SB2009TF, 10 TeV for RDR nom.
- Number of particles per BX 11500 for SB2009TF,5400 for RDR nom.
- Energy density vs Radius. SB2009TF has about twice at any given radius, and extends 5 mm further.
- All the relevant numbers double

March 29, 2010 20 / 38

- Distribution of particle energy for r > 20 mm.
- Total energy in BeamCal per BX: 24 TeV for SB2009TF, 10 TeV for RDR nom.
- Number of particles per BX 11500 for SB2009TF,5400 for RDR nom.
- Energy density vs Radius. SB2009TF has about twice at any given radius, and extends 5 mm further.
- All the relevant numbers double

March 29, 2010 20 / 38

- Distribution of particle energy for r > 20 mm.
- Total energy in BeamCal per BX: 24 TeV for SB2009TF, 10 TeV for RDR nom.
- Number of particles per BX 11500 for SB2009TF,5400 for RDR nom.
- Energy density vs Radius. SB2009TF has about twice at any given radius, and extends 5 mm further.
- All the relevant numbers double

- Distribution of particle energy for r > 20 mm.
- Total energy in BeamCal per BX: 24 TeV for SB2009TF, 10 TeV for RDR nom.
- Number of particles per BX 11500 for SB2009TF,5400 for RDR nom.
- Energy density vs Radius. SB2009TF has about twice at any given radius, and extends 5 mm further.
- All the relevant numbers double

3

4 A N

SB2009 and physics: $\tilde{\tau}$ in SPS1a'

Pure mSUGRA model:

$$M_{1/2} = 250 \ GeV, M_0 = 70 \ GeV, A_0 = -300 \ GeV,$$

tan $\beta = 10, sign(\mu) = +1$

Just outside what is excluded by LEP and low-energy observations. Compatible with WMAP, with $\tilde{\chi}_1^0$ Dark Matter.

- All sleptons available.
- No squarks.
- Lighter bosinos, up to $\tilde{\chi}^0_3$ (in $e^+e^- \rightarrow \tilde{\chi}^0_1 \tilde{\chi}^0_3$)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Features of $\tilde{\tau}$:s in SPS1a'

- In SPS1a', the $\tilde{\tau}_1$ is the NLSP.
- $M_{\tilde{\tau}_1} = 107.9 \text{ GeV}, M_{\tilde{\tau}_2} = 194.9 \text{ GeV} M_{\tilde{\chi}_1^0} = 97.7 \text{ GeV}/c^2$
- $E_{\tilde{\tau}_1,min} = 2.6 \text{ GeV}, E_{\tilde{\tau}_1,max} = 42.5 \text{ GeV}: \gamma \gamma \text{ background}.$
- $E_{\tilde{\tau}_2,min} = 35.0 \text{ GeV}, E_{\tilde{\tau}_2,max} = 152.2 \text{ GeV}: WW \rightarrow l\nu l\nu$ background.
- The τ̃ mass-eigen states ≠ chiral-eigen states. Off-diagonal term of mass-matrix: -M_τ(A_{τ̃} μ tan β).
- $\tilde{\tau}$ NLSP $\rightarrow \tau$:s in most SUSY decays \rightarrow SUSY is background to SUSY.
- For pol=(-1,1): $\sigma(\tilde{\chi}_2^0 \tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+ \tilde{\chi}_1^-)$ = several hundred fb and BR(X $\rightarrow \tilde{\tau}$) > 50 %. For pol=(1,-1): $\sigma(\tilde{\chi}_2^0 \tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+ \tilde{\chi}_1^-) \approx 0$.

Polarisation = (0.8, -0.3) assumed.

Features of $\tilde{\tau}$:s in SPS1a'

- In SPS1a', the $\tilde{\tau}_1$ is the NLSP.
- $M_{\tilde{\tau}_1} = 107.9 \text{ GeV}, M_{\tilde{\tau}_2} = 194.9 \text{ GeV} M_{\tilde{\chi}_1^0} = 97.7 \text{ GeV}/c^2$
- $E_{\tilde{\tau}_1,min} = 2.6 \text{ GeV}, E_{\tilde{\tau}_1,max} = 42.5 \text{ GeV}: \gamma \gamma \text{ background}.$
- $E_{\tilde{\tau}_2,min} = 35.0 \text{ GeV}, E_{\tilde{\tau}_2,max} = 152.2 \text{ GeV}: WW \rightarrow l\nu l\nu$ background.
- The $\tilde{\tau}$ mass-eigen states \neq chiral-eigen states. Off-diagonal term of mass-matrix: $-M_{\tau}(A_{\tilde{\tau}} \mu \tan \beta)$.
- For pol=(-1,1): $\sigma(\tilde{\chi}_2^0 \tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+ \tilde{\chi}_1^-)$ = several hundred fb and BR(X $\rightarrow \tilde{\tau}$) > 50 %. For pol=(1,-1): $\sigma(\tilde{\chi}_2^0 \tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+ \tilde{\chi}_1^-) \approx 0$.

Polarisation = (0.8, -0.3) assumed.

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・

Extracting the $\tilde{\tau}$ properties

From decay kinematics:

- $M_{\tilde{\tau}}$ from $M_{\tilde{\chi}_{\tau}^0}$ and end-point of spectrum = $E_{\tau,max}$.
- Need to measure end-point of spectrum.
- In principle: $M_{\tilde{\chi}_1^0}$ turn-over of spectrum = $P_{\tau,min}$, but hidden in $\gamma\gamma$ background.
- Must get $M_{\tilde{\chi}_{1}^{0}}$ from other sources. ($\tilde{\mu}$, \tilde{e} , not yet done)

From cross-section:

•
$$\sigma_{\tilde{\tau}} = A(\theta_{\tilde{\tau}}, \mathcal{P}_{beam}) \times \beta^3 / s$$
, so
• $M_{\tilde{\tau}} = E_{beam} \sqrt{1 - (\sigma s / A)^{2/3}}$: no $M_{\tilde{\chi}_1^0}$!

Topology selection

$\tilde{\tau}$ properties:

- Only two τ :s in the final state.
- Large missing energy and momentum.
- High acollinearity, with little correlation to the energy of the τ decay-products.
- Central production.
- No forward-backward asymmetry.

Select this by:

- Exactly two jets.
- *N_{ch}* < 10
- Vanishing total charge.
- Charge of each jet = ± 1 ,
- $M_{jet} < 2.5 \, {
 m GeV}/c^2$,
- *E_{vis}* < 300 GeV,
- $M_{miss} > 250 \text{ GeV}/c^2$,
- No particle with momentum above 180 GeV/*c* in the event.

Topology selection

$\tilde{\tau}$ properties:

- Only two τ :s in the final state.
- Large missing energy and momentum.
- High acollinearity, with little correlation to the energy of the τ decay-products.
- Central production.
- No forward-backward asymmetry.

Select this by:

- Exactly two jets.
- *N_{ch}* < 10
- Vanishing total charge.
- Charge of each jet = ± 1 ,
- $M_{jet} < 2.5 \text{ GeV}/c^2$,
- $E_{vis} < 300 \text{ GeV},$
- $M_{miss} > 250 \text{ GeV}/c^2$,
- No particle with momentum above 180 GeV/c in the event.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$\gamma\gamma$ suppression

 $\Delta(M) = 10.2 \text{ GeV}/c^2 \rightarrow \gamma \gamma \text{ background } \dots$

- Correlated cut in ρ and θ_{acop} : $\rho > 2.7 \sin \theta_{acop} + 1.8$.
- no significant activity in the BeamCal
- φ_{p miss} not in the direction of the incoming beam-pipe.

< 🗇 🕨

Finding τ :s

In particular in the presence of beam-background, general jet-finders perform poorly when used to find τ :s Use the DELPHI τ -finder: Performs better than Durham forced to two jets already without background:

BLUE: Durham, RED: DELPHI

Mikael Berggren (DESY)

ILC beam-parameters and New Physics

End-point and cross-section

Additional cuts against $\gamma\gamma$

- $|\cos \theta_{missing momentum}| < 0.8$
- Low fraction of "Rest-of-Event" energy at low angles.
- Good agreement p_{track} E_{calo}

From now on: Different cuts for $\tilde{\tau}_1$ ($\gamma\gamma$ background), and $\tilde{\tau}_2$ (*WW* background).

- *E_{vis}* < 120 GeV,
- $|\cos \theta_{jet}| < 0.9$ for both jets,
- $heta_{acop} > 85^{\circ}$,
- (*E_{jet1}* + *E_{jet2}*) sin θ_{acop} < 30 GeV.
- $M_{vis} > 20 \text{ GeV}/c^2$.

- $E_{vis} > 50 \text{ GeV}.$
- $\theta_{acop} < 155^{\circ}$.
- Other side jet not e or μ
- Most energetic jet not e or μ
- Cut on Signal-SM LR of f(q_{jet1} cosθ_{jet1},q_{jet2} cosθ_{jet2})

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ.

- Only the upper end-point is relevant.
- Background subtraction:

 - *τ˜*₂: ~ no SUSY background above 45 GeV. Take background from SM-only simulation and fit exponential.
- Fit line to (data-background fit).

3

- Only the upper end-point is relevant.
- Background subtraction:
 - *τ˜*₁: Substantial SUSY
 background,but region
 above 45 GeV is signal free.
 Fit exponential and
 extrapolate.
 - $\tilde{\tau}_2$: ~ no SUSY background above 45 GeV. Take background from SM-only simulation and fit exponential.
- Fit line to (data-background fit).

March 29, 2010 28 / 38

- Only the upper end-point is relevant.
- Background subtraction:
 - *τ˜*₁: Substantial SUSY
 background,but region
 above 45 GeV is signal free.
 Fit exponential and
 extrapolate.
 - [˜]₂: ~ no SUSY background above 45 GeV. Take background from SM-only simulation and fit exponential.
- Fit line to (data-background fit).

▲ 同 ▶ → 三 ▶

- Only the upper end-point is relevant.
- Background subtraction:
 - *τ˜*₁: Substantial SUSY
 background,but region
 above 45 GeV is signal free.
 Fit exponential and
 extrapolate.
 - [˜]₂: ~ no SUSY background above 45 GeV. Take background from SM-only simulation and fit exponential.
- Fit line to (data-background fit).

Fitting the $\tilde{\tau}$ mass: Cross-section

- Poorly known SUSY background is most important contribution to uncertainty.
- Select region where is is as low as possible.

< ロ > < 同 > < 回 > < 回 >

SB2009 and physics

Fitting the $\tilde{\tau}$ mass: Cross-section

- Poorly known SUSY background is most important contribution to uncertainty.
- Select region where is is as low as possible.

SB2009 and physics

Fitting the $\tilde{\tau}$ mass: Cross-section

- Poorly known SUSY background is most important contribution to uncertainty.
- Select region where is is as low as possible.

Potential effects:

- Total luminosity decrease for SB2009 w/o TF.
- Decrease of P(e⁺): More background, less-signal for τ̃₁.
- Incoming energy-spread grows: end-point blurred.
- Luminosity within 1 % of nominal reduced: lower signal.
- Twice as much beam-strahlung:
 - more overlayed tracks (real or fake): Destroys τ topology.
 - Twice as much energy in BeamCal: More $\gamma\gamma$.
- Higher probability for a γγ event in the same BX as the physics event (this effect has not yet been studied).

Events after cuts, end-point analysis

case		$ ilde{ au}_{1}$		$\tilde{ au}_2$		
	SM	SUSY	signal	SM	SUSY	signal
RDR	317	998	10466	1518	241	1983
SB09(TF)	814	956	8410	1346	223	1555
SB09(nTF)	611	717	6308	1009	167	1166

Events after cuts, cross-section analysis

case		$ ilde{ au}_1$		$ ilde{ au}_2$		
	SM	SUSY	signal	SM	SUSY	signal
RDR	17.6	47.7	2377	1362	33.7	1775
SB09(TF)	17.6	45.7	1784	1194	32.4	1366
SB09(nTF)	13.2	34.3	1337	895	24.3	1025

э

(a)

Errors on end-point (GeV)

case	#	$\tilde{\tau}_1$	$\tilde{ au}_2$
RDR	1	0.129	1.83
+SB bck	2	0.144	2.02
+SB ppol	3	0.153	2.06
+SB spect	4	0.152	2.10
+SB noTF	5	0.179	2.42

Errors on cross-section (%)

#	$ ilde{ au}_1$	$\tilde{ au}_2$
1	2.90	4.24
2	3.03	4.72
3	3.31	4.77
4	3.52	5.09
5	3.79	5.71
	# 1 2 3 4 5	$\begin{array}{c c} \# & \tilde{\tau}_1 \\ 1 & 2.90 \\ 2 & 3.03 \\ 3 & 3.31 \\ 4 & 3.52 \\ 5 & 3.79 \end{array}$

Red: cross-section, Blue: end-point, Solid : $\tilde{\tau}_1$, Dashed: $\tilde{\tau}_2$.

・ロト ・ 同ト ・ ヨト ・ ヨト

э

Errors on end-point (GeV)

case	#	$\tilde{\tau}_1$	$\tilde{ au}_2$
RDR	1	0.129	1.83
+SB bck	2	0.144	2.02
+SB ppol	3	0.153	2.06
+SB spect	4	0.152	2.10
+SB noTF	5	0.179	2.42

Errors on cross-section (%)

case	#	$ ilde{ au}_1$	$ ilde{ au}_2$
RDR	1	2.90	4.24
+SB bck	2	3.03	4.72
+SB ppol	3	3.31	4.77
+SB spect	4	3.52	5.09
+SB noTF	5	3.79	5.71

Red: cross-section, Blue: end-point, Solid : $\tilde{\tau}_1$, Dashed: $\tilde{\tau}_2$.

・ロト ・ 同ト ・ ヨト ・ ヨト

э

SB2009 and physics: SM Higgs at 120 GeV

Potential effects:

- Factor 3 to 4 decrease of luminosity at optimal E_{cm} (=230 GeV), LOI studies were done at 250 GeV.
- Due to move of undulator.

Other aspects poses no problems:

- At $E_{cm} = 250 \text{ GeV}$ the undulator works at the same working-point for RDR and SB2009.
- Higgs recoil-mass analysis is not sensitive to γγ background, nor to overlayed background tracks.

Suggestion: Do analysis at 350 GeV, where loss is much less (20-40 %). NB: this was not studied in the LOI for the RDR.

- Do fastsim at 350 GeV, RDR and SB2009.
- Verify fastsim wrt. full sim at 250 GeV, RDR parameters.

SB2009 and physics

SB2009 and physics: SM Higgs at 120 GeV

Fastsim verification. Examples

SB2009 and physics

SB2009 and physics: SM Higgs at 120 GeV

Fastsim verification. Examples

Mikael Berggren (DESY)

ILC beam-parameters and New Physics

March 29, 2010 34 / 38
Compare recoil-mass peak obtainable with the same running-time at 250 or 350 GeV, for...

- RDR
- SB2009 (no TF)
- All-in-one
- Peak is broader at 350 GeVdue to detector-resolution. Higher momentum gives higher error !

Clearly things have deteriorated. How much ?.

- Compare recoil-mass peak obtainable with the same running-time at 250 or 350 GeV, for...
 - RDR
 - SB2009 (no TF)
 - All-in-one
 - Peak is broader at 350
 GeVdue to detector-resolution.
 Higher momentum gives
 higher error !
- Clearly things have deteriorated. How much ?.

A D N A B N A B N

- Compare recoil-mass peak
- obtainable with the same running-time at 250 or 350 GeV, for...
 - RDR
 - SB2009 (no TF)
 - All-in-one
 - Peak is broader at 350
 GeVdue to detector-resolution.
 Higher momentum gives
 higher error !
- Clearly things have deteriorated. How much ?.

< ロ > < 同 > < 回 > < 回 >

- Compare recoil-mass peak obtainable with the same running-time at 250 or 350 GeV, for...
 - RDR
 - SB2009 (no TF)
 - All-in-one
 - Peak is broader at 350 GeVdue to detector-resolution. Higher momentum gives higher error !
- Clearly things have deteriorated. How much ?.

The numbers :					
Beam Par	\mathcal{L}_{int} (fb ⁻¹)	ϵ	S/B	$\Delta(M_H)$ (GeV)	$\delta\sigma/\sigma$
RDR 250	188	55%	62%	0.043	3.9%
RDR 350	300	51%	92%	0.084	4.0%
SB2 TF 250b	68	55%	62%	0.071	6.4%
SB TF 350	250	51%	92%	0.092	4.3%
SB2 woTF 250b	55	55%	62%	0.079	7.2%
SB woTF 350	175	51%	92%	0.110	5.2%

• For RDR: 250 GeV is best both for cross-section and Mass.

- For SB2009 TF: 250 GeV is best for Mass, 350 GeV for cross-section.
- Must choose:
 - Either Mass worse by 110 %, Cross-section by 10 %
 - ... Or Mass worse by 70 %, Cross-section by 65 % by

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The numbers :					
Beam Par	\mathcal{L}_{int} (fb ⁻¹)	ϵ	S/B	$\Delta(M_H)$ (GeV)	$\delta\sigma/\sigma$
RDR 250	188	55%	62%	0.043	3.9%
RDR 350	300	51%	92%	0.084	4.0%
SB2 TF 250b	68	55%	62%	0.071	6.4%
SB TF 350	250	51%	92%	0.092	4.3%
SB2 woTF 250b	55	55%	62%	0.079	7.2%
SB woTF 350	175	51%	92%	0.110	5.2%

• For RDR: 250 GeV is best both for cross-section and Mass.

- For SB2009 TF: 250 GeV is best for Mass, 350 GeV for cross-section.
- Must choose:
 - Either Mass worse by 110 %, Cross-section by 10 %
 - ... Or Mass worse by 70 %, Cross-section by 65 % by

The numbers :	· ··· ·				
Beam Par	\mathcal{L}_{int} (fb ⁻¹)	ϵ	S/B	$\Delta(M_H)$ (GeV)	$\delta\sigma/\sigma$
RDR 250	188	55%	62%	0.043	3.9%
RDR 350	300	51%	92%	0.084	4.0%
SB2 TF 250b	68	55%	62%	0.071	6.4%
SB TF 350	250	51%	92%	0.092	4.3%
SB2 woTF 250b	55	55%	62%	0.079	7.2%
SB woTF 350	175	51%	92%	0.110	5.2%

- For RDR: 250 GeV is best both for cross-section and Mass.
- For SB2009 TF: 250 GeV is best for Mass, 350 GeV for cross-section.

• Must choose:

Either Mass worse by 110 %, Cross-section by 10 %
 ... Or Mass worse by 70 %, Cross-section by 65 % by

The numbers :	· ··· ·				
Beam Par	\mathcal{L}_{int} (fb ⁻¹)	ϵ	S/B	$\Delta(M_H)$ (GeV)	$\delta\sigma/\sigma$
RDR 250	188	55%	62%	0.043	3.9%
RDR 350	300	51%	92%	0.084	4.0%
SB2 TF 250b	68	55%	62%	0.071	6.4%
SB TF 350	250	51%	92%	0.092	4.3%
SB2 woTF 250b	55	55%	62%	0.079	7.2%
SB woTF 350	175	51%	92%	0.110	5.2%

- For RDR: 250 GeV is best both for cross-section and Mass.
- For SB2009 TF: 250 GeV is best for Mass, 350 GeV for cross-section.
- Must choose:
 - Either Mass worse by 110 %, Cross-section by 10 %
 - ... Or Mass worse by 70 %, Cross-section by 65 % by

Conclusions...

Machine-parameters:

- Depending on what is built in to the machine (*P_{RF}*, *f_{rep}*, *N_{bunch}*, δ_{BS} ...), luminosity scales differently with *E_{cm}*, but it's never constant.
- Different machine setups give different gives different luminosity scaling, different polarisation scaling, different energy within 1 % to nominal, different spread in *E_{beam}*.

Lessons from $\tilde{\tau}$:s:

- For "fragile" signals, beam-background influences signal directly.
- For any "low Δ(*m*)" (< 10 GeV) signal, beam-background should be taken into consideration when estimating γγ background.
- RDR → SB2009: 15-20 % degradation (end-point and cross-section, ~ 1 and ~ 2).
- Half from the modifications of the positron source: Spread in E_{cm} , reduction in $Pol(e^+)$.

Mikael Berggren (DESY)

March 29, 2010 37 / 38

Conclusions...

Machine-parameters:

- Depending on what is built in to the machine (*P_{RF}*, *f_{rep}*, *N_{bunch}*, δ_{BS} ...), luminosity scales differently with *E_{cm}*, but it's never constant.
- Different machine setups give different gives different luminosity scaling, different polarisation scaling, different energy within 1 % to nominal, different spread in *E_{beam}*.

Lessons from $\tilde{\tau}$:s:

- For "fragile" signals, beam-background influences signal directly.
- For any "low Δ(*m*)" (< 10 GeV) signal, beam-background should be taken into consideration when estimating γγ background.
- RDR → SB2009: 15-20 % degradation (end-point and cross-section, τ̃₁ and τ̃₂).
- Half from the modifications of the positron source: Spread in *E_{cm}*, reduction in *Pol*(*e*⁺).

Mikael Berggren (DESY)

Conclusions

Lessons from SM Higgs:

- Results will not scale with cross-section if *E_{cm}* changes: Detector resolution depends on energy.
- RDR → SB2009: Mass degrades by 110%, cross-section by 10 %, or by 70 % and 65 %.
- Driven by loss of luminosity at 250 GeV, completely due to move of positron source.

The machine matters!

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Conclusions

Lessons from SM Higgs:

- Results will not scale with cross-section if *E_{cm}* changes: Detector resolution depends on energy.
- RDR → SB2009: Mass degrades by 110%, cross-section by 10 %, or by 70 % and 65 %.
- Driven by loss of luminosity at 250 GeV, completely due to move of positron source.

The machine matters!

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >