R&D Status and plan for FPCCD VTX

Yasuhiro Sugimoto KEK @LCWS2010

R&D Issues

- FPCCD Sensor
- Readout ASIC
- Peripheral electronics
- Wafer thinning and low mass ladder
- Cooling system
- Simulation of background rejection

Sensor R&D

- 2007: Fully depleted CCD
 - Pixel size: 24 μ m
 - High resistive epi, $15\mu m$ thick
- 2008: FPCCD#1
 - Pixel size: 12μm
 - Chip size: 6.1mm
 - 4ch/chip
 - Horizontal register in the image area
- 2009: FPCCD#2
 - Pixel size: 12μm
 - Improvements from 2008 model
- 2010: FPCCD#3
 - Pixel size: 12~6µm
 - To be delivered in few days

Sensor R&D

• FPCCD in 2010

- Chip size: 6.1mm (image area)
- Pixel size: 12, 9.6, 8, and 6 μm
- Reduced CR of AI line for horizontal register gate

Sensor R&D

- Study plan of FPCCD in FY2010-2011
 - S/N ratio
 - Incident angle measurement using cluster shape
 - Spatial resolution
 - Two-track separation
 - Radiation immunity

Cooling system

- Cooling of FPCCD VTX
 - Power consumption ~ 80W (sensor + FE ASIC) + additional power consumption (clock driver, etc.) outside VTX cryostat
 - Operation at ~-40°C inside the cryostat
- Possible cooling system
 - Cool nitrogen gas
 - For $\Delta T=20^{\circ}C$, gas flow of ~3 ℓ /s is necessary
 - If pipe diameter is 1cm, v=40 m/s
 - 2-phase CO2
 - FPCCD VTX has heat source at the ladder ends
 - Cooling with liquid coolant can be a solution

2-phase CO2 cooling

- Cooling by latent heat of evaporative CO2
- Compared to other $(C_n F_{2n+2})$ 2-phase coolant
 - Larger latent heat
 - Lower viscosity
 - − → Thinner pipe
 - − High pressure: 1 MPa (@ −40°C) 5 MPa (@ 15°C)
- NIKHEF group is proposing this system for ILD TPC cooling
- Used/planned for
 - AMS
 - LHCb-VELO
 - SLHC detector upgrade
 - ILD TPC

	CO2	C2F6	C3F8
Latent heat@ -40°C	321 J/g	~100 J/g	~110 J/g
Triple point	−56.4°C	−97.2°C	−160°C
Critical point	31.1°C	19.7 °C	71.9 °C
GWP	1	9200	7000

2-phase CO2 cooling

- Two options of cooling principle
 - With CO2 compressor
 - Conventional method
 - Warm transfer between cooling plant and detector
 - J-T expansion near detector
 - Without CO2 compressor
 - Liquid CO2 is circulated using liquid pump
 - Cold transfer between cooling plant and detector
 - For TPC cooling (~room temp.) CO2 can be condensed using cool water
 - For low temp. cooling, additional cooling cycle is necessary to condense CO2
- R&D collaboration in Japan
 - ILD TPC, FPCCD VTX, Belle-II VTX, and KEK cryogenic group
 - We will request budget from KEK in FY2010

Enthalpy

Summary

- We have developed fully depleted CCDs with standard (24 μ m), medium (12 μ m), and finally fine (6 μ m) pixel size
- Detailed study on the FPCCD will be done in FY2010-2011
- Cooling system using 2-phase CO2 is an interesting option for FPCCD VTX because FPCCD VTX has main heat source only at the ladder ends
- We will start R&D on 2-phase CO2 cooling collaborating with TPC group, Belle-II VTX group, and KEK cryogenic group

backup

p-h diagram of CO2

