

Status of the MICROMEGAS semi-DHCAL

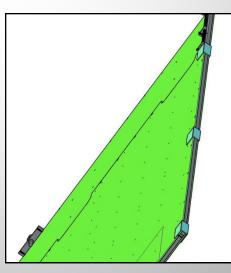
M. Chefdeville LAPP, Annecy, France LCWS, 27th March 2010, Beijing

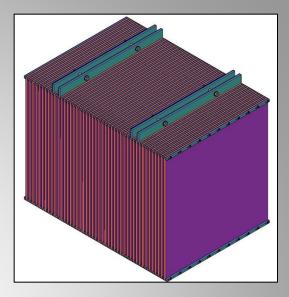
Overview

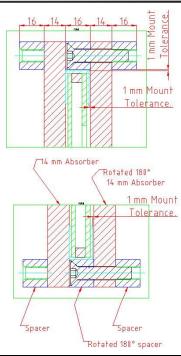
• The 1 m³ semi-DHCAL project & MICROMEGAS

- Simulation
- Test beam and ASIC
- DAQ

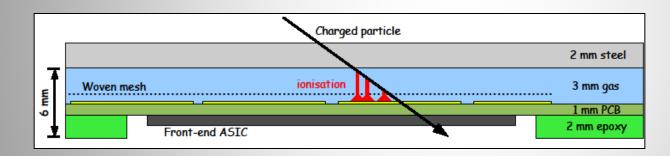
• The 1 m² MICROMEGAS prototype

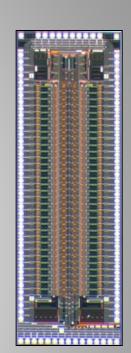

The 1 m³ semi-DHCAL

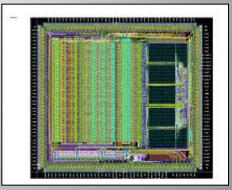

- Calorimetry based on Particle Flow
 - Granularity more important than resolution \rightarrow digital option
 - Loss of linearity at high energy (100 GeV/c)
 - \rightarrow 2 bit readout \rightarrow semi-digital HCAL
- 1 m³ semi-DHCAL project in France
 - Funded by CNRS/IN2P3 + "Agence Nationale de la Recherche" (ANR)
 + Rhone-Alpes region (chip development)
 - Several labs involved
 LAL (Orsay) → HARDROC
 IPNL (Lyon) → RPC
 LLR (Palaiseau) → CALICE DAQ
 LAPP (Annecy) → MICROMEGAS
- Choice of active media (required by ANR schedule)
 - 3 physicist committee
 - RPC favored but production of MICROMEGAS m² planes should be pursued


The 1 m³ structure

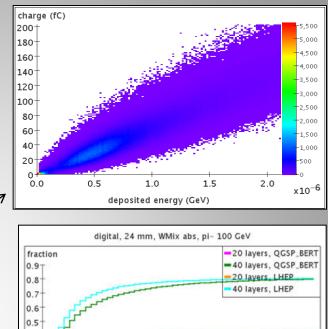
- Design proposed by CIEMAT group
 - In collaboration with LAPP engineer
 - 2 different mechanical pieces minimum machine operation on each piece
 - Deformation and stress simulation
- From Enrique Calvo Alamillo talk, Madrid, 1st March 2010
- Compatible with RPC and MICROMEGAS
 - 44 planes
 - 16 mm between absorbers
 1 mm tolerances

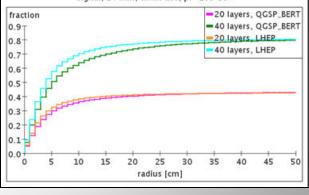


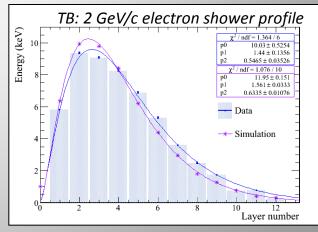



Detector planes

- RPC VS MICROMEGAS
 - Large VS small signals, low VS high rate capability
 - Limited proportionality VS proportional mode \rightarrow MICROMEGAS best suited for semi-DHCAL

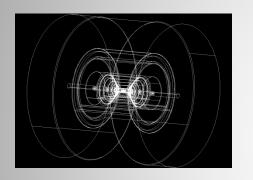


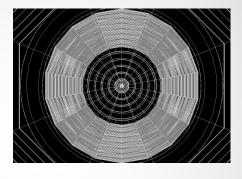

- Semi-digital readout
 - HARDROC or DIRAC ASIC (3 thresholds)
 - What should the threshold be?
 - \rightarrow detailed simulation

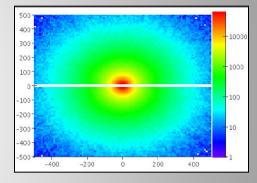


Simulation (I)

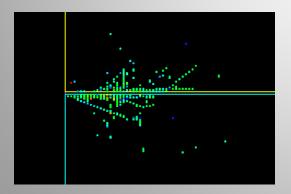
- Comparison analogue/digital readout for 1 m³ steel, applying 1 energy threshold
 - Energy resolution, linearity, shower shapes
 → 2009 JINST 4 P11009
- Digitization, from GEANT4 energy deposits in gas layers to hits, applying charge thresholds
- Simulation for CLIC:
 - Definition of HCAL;
 - Definition of small prototype for beam test:
 → J. Blaha, CLIC Physics and Detector Meeting, 15 Sep. 2009, CERN
- TB setup simulation and comparison with data
 → shower profile study to be published

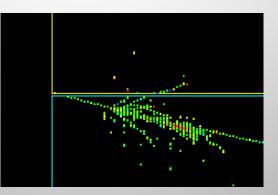


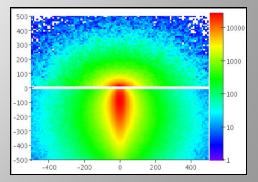




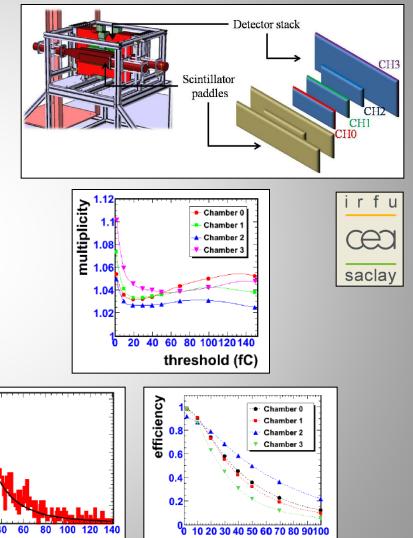
Simulation (II)

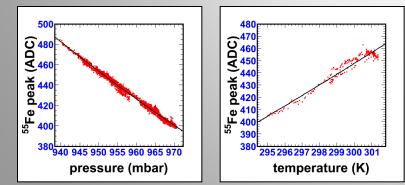

• Implementation of MICROMEGAS DHCAL in CLIC and SiD detector geometry

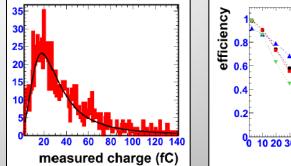




- Study of crack effects on HCAL performance
 - Projective and tilted geometries

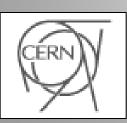






TB and ASIC developments

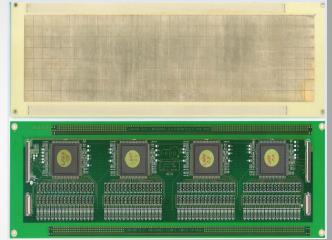
- Detector characterisation done with analogue readout prototype (GASSIPLEX)
 - Carried out with Irfu collaborators
 - \rightarrow 2009 JINST **4** P11023
- Signal MPV of 20 fC (with 10 % variations)
- Sensitivity to P, T (2 % / K & -0.6 % / mbar)
- At a threshold of 1.5 fC •
 - 97 % efficiency with variations < 1 %</p>
 - Hit multiplicity below 1.12



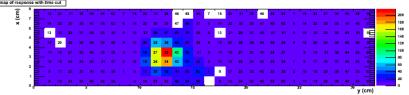
threshold (fC)

TB and ASIC developments

- Now focus on test of digital readout prototypes with embedded electronics
 - ASIC and spark protection components on PCB
 - Bulk lamination on PCB using a mask at CERN workshop
 - RD51 collaboration (*http://rd51-public.web.cern.ch/RD51-Public*) asked for a new location: increased production capability
- 2 different chips (64 channel each)
 - HARDROC (LAL/Omega group), asynchronous functioning, shape signals
 - DIRAC (IPNL/LAPP), synchronous functioning, integrate signals

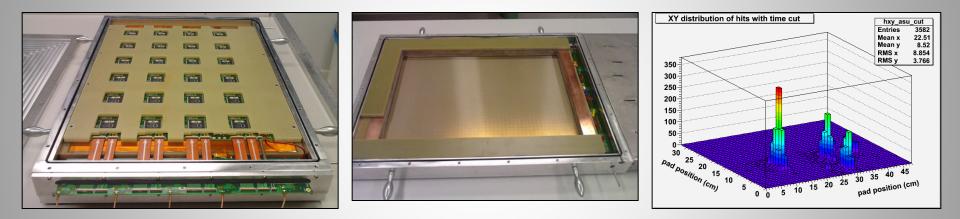


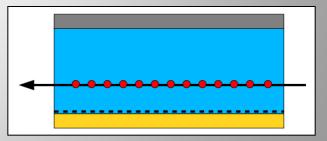
2009 TB with HARDROC1


- 3 chambers of 32x8 cm² (3 mm gas gap) 4 chips & 1 DIF / board
- May 09 @ PS/T10
 - Hard times with DAQ: DIF synchronicity no acquisition software expert available USB data readout problems...
 - No quantitative study: beam profile
 → it works

32x8 cm² ASU with 4 HARDROC

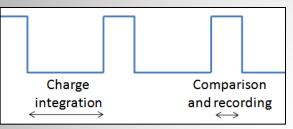
- Sep 09 @ PS/T10 (DAQ OK)
 - Very low efficiency (5-10 %)
 - Understood as too short shaping time


Hadron beam profile in one chamber



2009 TB with HARDROC2

 1 board of 48x32 cm² (unit of future 1 m²) inside a gas test box with 3 cm gas gap, equipped with 24 chips & 1 DIF



- Test with chamber (perpendicular and) // to beam
 - Faster signals at the pads
 - Larger signals (1 cm)
 - Efficiency between 10-90 % depending on chip threshold

2008-09 TB with DIRAC

• Synchronous chip functioning (ILC-like)

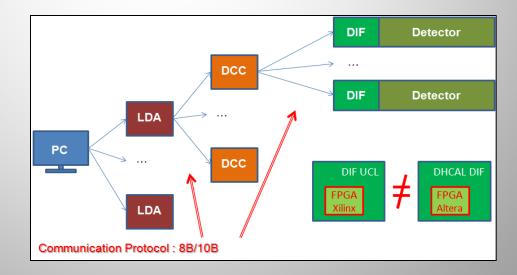
- First chamber with embedded ASIC (ASU)
 8x8 cm² tested in SPS beam in 2008
- Stack of 4 chambers (8x8 cm²)
 - PS/T9 in Nov. 2009
 - − Short life-time in beam
 → chip design improvement
 - − Small statistics but promising results
 → multiplicity 1.06-1.13
 - \rightarrow efficiency 45-50 %

Chamber 1: 12 / 27 = 0.44 Chamber 2: 14 / 29 = 0.48 Chamber 3: 14 / 30 = 0.47 Chamber 4: 14 / 30 = 0.47

To be corrected for synchronous functioning

Future plans for front end electronics

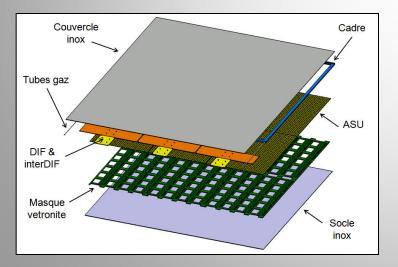
- HR input stage not suited for the detection of MICROMEGAS signals
- Promising results obtained with DIRAC chip


→Development of a new chip from existing ones, in collaboration with LAL/Omega group

→ Work on spark protection spark proofness test setup @ LAPP innovative solutions studied within RD51

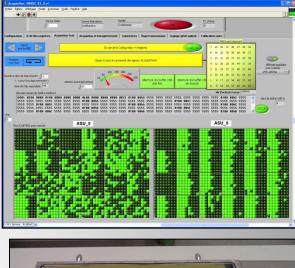
Contribution to CALICE DAQ

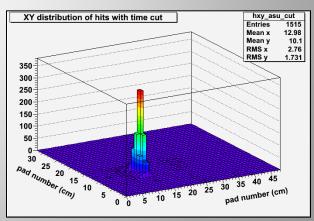

- Detector Interface (DIF) developed at LAPP is ready for production
 - A batch of 20 DIF should be available end of March
 - 150 board production planned for this summer, all available in Sept.
- Important milestones
 - 8B/10B communication protocols validated (LAPP/LLR)
 - CCC (Clock and Control Card) integration in work at LAPP



The 1 m² MICROMEGAS prototype

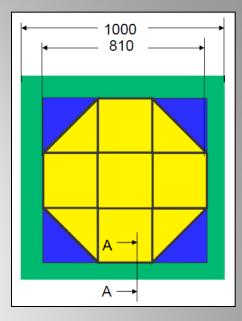
- Features
 - 6 ASU of 48x32 cm²
 - − 24 ASIC / ASU \rightarrow 1536 * 6 = 9216 channels
 - Dead areas < 10 %
 - Total thickness of 1.15 cm (incl. steel covers)
 - 3 DIF boards
- Test of each ASU separately
- Assembly procedure validated

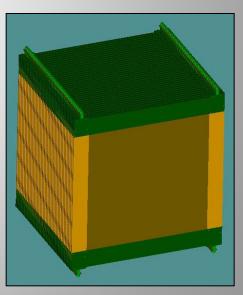




Status and future plans

- ASU test on-going
 - Measurement of ASIC performance
 - Noise, gain, uniformity, equalization
 - Response to ⁵⁵Fe X-rays and cosmics in gas box @ LAPP
- 4 ASU with HR2, 1 ASU with HR2b + 1 dummy Assembly foreseen in April Cosmics tests @ LAPP until June
- 2-3 weeks of beam in SPS/H4 end of June
 - Efficiency, multiplicity, uniformity
 - Spark study (beam intensity)




Test inside W-structure

- The LCD-CERN, CALICE-DESY and LAPP groups agreed to work together and construct a W-HCAL prototype starting 2010
 - LAPP contribution on simulation + MICROMEGAS layers
 → see W. Klempt talk at CALICE meeting, Arlington, 12/03/10

- Start with a small prototype
 - 20 W-layers of 81x81 cm², 1 cm thick
- 2 weeks of beam inside W-structure with AHCAL in PS/T9 starting mid November 2010
 - Test of scintillator layers + 1 or more MICROMEGAS planes

Conclusions

- MICROMEGAS, as proportional detector, is well suited for a semi-DHCAL
- Very good basic performance for a DHCAL but strongly depends on electronics
 - HARDROC input stage not optimized for MICROMEGAS signals Work on a new ASIC on-going
 - Several options for spark protection are being investigated
- First 1 m² MICROMEGAS prototype available end of April 2010 and ready for beam test at the end of June
 - Equipped with HR2, so limited performance expected However, a lot to learn for next 1 m² prototypes
 - Next prototypes should be equipped with a different chip
 - One plane with DIRAC if spark protection issue solved
 - Next planes with a new chip, probably resulting from the collaboration between LAL and LAPP

Acknowledgments

the LAPP group

Catherine Adloff Jan Blaha Jean-Jacques Blaising Sébastien Cap Maximilien Chefdeville Alexandre Dalmaz Cyril Drancourt Ambroise Espargilière

Laurent Fournier Renaud Gaglione Nicolas Geffroy Jean Jacquemier Yannis Karyotakis Fabrice Peltier Julie Prast Guillaume Vouters

collaborators

David Attié Enrique Calvo Alamillo Paul Colas **Christophe Combaret Mary-Cruz Fouz Iglesias** Wolfgang Klempt Lucie Linsen Rui de Oliveira **Dieter Schlatter Nathalie Seguin** Christophe de la Taille Wemxing Wang