

Physics

Hitoshi Murayama (IPMU & Berkeley) LCWS 2010, Beijing, March 26, 2010

BERKELEY CENTER FOR THEORETICAL PHYSICS

PMU Physics case for ILC

- have been in the LC community since 1990
- NLC, JLC, TESLA, CLIC,
- many ups and downs in hopes and perceptions about ILC
- don't think physics case has been really changed since then

(reassuring & disappointing)

- We know little about the origin of electroweak symmetry breaking
 - Higgs sector
 - hierarchy problem
- precision EW data suggest light Higgs
- dark matter may well be a TeV-scale WIMP
- Whatever we find at LHC, we need to reconstruct the Lagrangian from data@ILC
- What energy?

PMU New physics looks alike

missing E_T, multiple jets, b-jets, (like-sign) di-leptons

UED SUSY technicolor spin 1 spin 1/2 spin 0 +little Higgs with T-parity, warped ED with Z₃ baryon

The Other Half of the World Discovered Geneva, Switzerland

As an example, supersymmetry "New-York Times level" confidence still a long way to

"freshman physics" level confidence

"We have learned that all particles we observe have unique partners of different spin and statistics, called superpartners, that make our theory of elementary particles valid to small distances." Drec mea

- SUSY spectroscopy
- kinematic fits, partial wave analysis, Dalitz analysis, etc
- precision mass, BR measurements

precision SUSY

Squarks

J=0?

PDG 2016

BERKELEY CENTER THEORETICAL PHY

The following data are averaged over all light flavors, presumably u, d, s, c with both chiralities. For flavor-tagged data, see listings for Stop and Sbottom. Most results assume minimal supergravity, an untested hypothesis with only five parameters. Alternative interpretation as extra dimensional particles is possible. See KK particle listing.

SQUARK MASS

VALUE (GeV) 538±10	DOCUMENT ID OUR FIT	<u>TECN</u>	<u>COMMENT</u> mSUGRA assumptions
532±11	¹ ABBIENDI 11D	CMS	Missing ET with mSUGRA assumptions
541±14	² ADLER 110	ATLAS	Missing ET with mSUGRA assumptions
• • • We do not use	e the following data for	r averages, fits,	limits, etc • • •
652±105	³ ABBIENDI 11K	CMS	extended mSUGRA with 5 more parameters

¹ABBIENDI 11D assumes minimal supergravity in the fits to the data of jets and missing energies and set $A_0=0$ and $\tan\beta=3$. See Fig. 5 of the paper for other choices of A_0 and $\tan\beta$. The result is correlated with the gluino mass M_3 . See listing for gluino.

²ADLER 11O uses the same set of assumptions as ABBIENDI 11D, but with tan $\beta = 5$. ³ABBIENDI 11K extends minimal supergravity by allowing for different scalar massessquared for Hu, Hd, 5* and 10 scalars at the GUT scale.

MODE	<u>BR(%)</u>	DOCUMENT ID	TECN	COMMENT
j+miss	32±5	ABE 10U	ATLAS	
j l+miss	73±10	ABE 10U	ATLAS	lepton universality
j e+miss	22±8	ABE 10U	ATLAS	
j μ +miss	25±7	ABE 10U	ATLAS	
d χ_+	seen	ABE 10U	ATLAS	

SQUARK DECAY MODES

Presonstruct Lagrangier terter from data

- Specify the fields
 - mass
 - spin:Klein-Gordon, Dirac, Majorana, gauge
 - SU(3)xSU(2)xU(1) quantum numbers
 - mixing of states
- Specify their interactions
 - gauge interactions
 - Yukawa couplings
 - trilinear and quartic scalar couplings

BERKELEY CENTER FOR THEORETICAL PHYSICS

$\begin{array}{c} \text{mass} \\ e^+e^- \to \tilde{\chi}_1^+ \tilde{\chi}_1^- \to (\tilde{\chi}_1^0 l^{\pm} \mathbf{v}_l) (\tilde{\chi}_1^0 q \bar{q}') \end{array}$

 $E \gg m_Z$, measure I_3 and Y

IPMUDisentangle mixing BERKELEY CENTER OF BERKELEY OF BERKELEY CENTER OF BERKELEY OF BERKELEY OF BERKELEY OF BERKELEY CENTER OF BERKELEY CENTER OF BERKELEY CENTER OF BERKELEY OF BE

Yukawa coupling

Proprie scalar coupling de scalar coupling de scalar coupling de server for de server presenter presenter

 $u_e \bar{\nu}_e H$

 e^+

Prééconstruct Lagrangier de Prééler from data

- Specify the fields
 - mass
 - spin:Klein-Gordon, Dirac, Majorana, gauge
 - SU(3)xSU(2)xU(1) quantum numbers
 - mixing of states
- Specify their interactions
 - gauge interactions
 - Yukawa couplings
 - trilinear and quartic scalar couplings

Physics Significance

BERKELEY CENTER FOR THEORETICAL PHYSICS

Higgs coupling \propto mass

Prove

 Branching Fractions test the relation

coupling \propto mass

⇒ proves that Higgs Boson is the Mother of Mass

PMU Prove it is condensed

- ZH final state
- Prove the ZZH vertex

Prove it is condensed

- ZH final state
- Prove the ZZH vertex
- We know Z:gauge boson, H: scalar boson
- \Rightarrow only two types of vertices

PMU Prove it is condensed

ZH final state
Prove the ZZH vertex
We know Z:gauge boson, H: scalar boson
⇒ only two types of vertices
Need a condensate to get ZZH vertex
⇒ proves it is condensed in Universe
HM, hep-ex/9606001

PMU Prove it is condensed

ZH final state
Prove the ZZH vertex
We know Z:gauge boson, H: scalar boson
⇒ only two types of vertices
Need a condensate to get ZZH vertex
⇒ proves it is condensed in Universe
HM, hep-ex/9606001

Pre-oducing Dark Matter Content of Physics in the laboratory

ENTER

FOR

Dark Matter

Dark Matter Mass (TeV)

abundance

direct cross section

Omega from colliders

Extra D

- measure the number of dimensions
- location of the wave functions

VG

 \sim

e

e

R FOR YSICS

NTER

FOR

HYSICS

New force: Z'

iPMU cf. gauge coupling unification

BERKELEY CENTER FOR THEORETICAL PHYSICS

IPMU Gaugino and scalars

- Gaugino masses test unification itself independent of intermediate scales and extra complete SU(5) multiplets, also GMSB
- Scalar masses test beta functions at all scales, depend on the particle content

(Kawamura, HM, Yamaguchi)

29

Shoji Orito & Keisuke Fujii

Myths and Facts

IPMU new physics is unlikely at LHC

- Myth
- It is true that precision EW and flavor physics did not reveal new physics
- Very tight constraints on new physics below TeV (or even 100 TeV)
- Yet many exciting new physics candidates consistent with data
- e.g. SUSY with gauge mediation, little Higgs with T-parity, even some Higgsless

PMU dark matter is

out of reach for ILC

- Myth
- If you believe PAMELA & FERMI data to be dark matter signal, dark matter mass is 3–5 TeV
- they could well be due to nearby pulsars
- We really don't know

PMUNambu-Goldstone BERKELEY CENTER FOR Dark Matter

Ibe, HM, Shirai, Yanagida, JHEP 0911, 120 (2009)

- At this point, I can't imagine politicians approving ILC without seeing LHC data
- With LHC slipping, ILC slips together

IPMEP community is never the for behind ILC anymore

- Myth
- This is largely a sociological issue coupled with political reality
- We see a core community right here
- Once people see prospect, they start jumping on it

BERKELEY CENTER FOR THEORETICAL PHYSICS

PMU There are many **BERKELE** other options than ILC

- Fact & Myth
 - Numerous great ideas, R&D
 - muon collider \Rightarrow MICE
 - plasma \Rightarrow Bella & FACET
 - LHC energy upgrade \Rightarrow magnet R&D
 - Keep our mind open!
- HM understands that they won't be mature enough to be proposed as a TeV-scale collider right after promising LHC data

PMU hierarchy problem is overblown

- neither fact nor myth
- some argue that EW scale $\ll M_{Pl}$ because Universe doesn't support life otherwise
- there is nothing beyond SM Higgs@LHC
- We simply don't know
- will see at LHC
- no point arguing about it now

IPMULC cost is growing BERKELEY CENTER FOR out of control

- Myth
- US accounting requires escalation in cost estimates
- assume a slip by N years, multiply by assumed inflation ~(1 + 4%)^N
 - $N=10 \sim (1 + 4\%)^{N} \sim 1.5$
 - $N=20 \sim (1 + 4\%)^{N} \sim 2.2$

BERKELEY CENTER FOR THEORETICAL PHYSICS

ILC is dead

Absolutely not!

Conclusion

- We expect rich physics at "TeV" because of dark matter and cosmic superconductor, but not rigorously proven
- e⁺e⁻ LC great as long as the new particles are there within reach, allowing us to reconstruct theory based on data
- May even see physics well above TeV, connect to dark matter, cosmology
- What energy is enough?
- LHC will tell us. Look forward!
- We need to be ready once new physics