

;|r iic

Low-Emittance Tuning at CesrTA

Jim Shanks Cornell Laboratory for Accelerator-Based Sciences and Education

Outline

- Brief recap: results prior to November 2009
- November/December 2009 run
 - "AC eta" measurements
 - X-ray beam size monitor (xBSM)
 - Emittance tuning
 - Beam size vs. tunes
 - Gain mapping
- Plans for next run

Status Prior to 11/2009

- Developed and implemented optics at a range of energies
 1.8GeV < E_{beam} < 5.3GeV
 - With and without damping wigglers
 - All optics corrected, ramped and recovered injection
 - Switching optics and energies is relatively fast
- Implemented multiple-stage optics correction (orbit+η, then η+coupling)
- Developed machinery for "AC dispersion" measurements
 - Longitudinal resonant excitation
 - Measure coupling to transverse modes
- xBSM is operating
 - After setup/calibration (~45 minutes), measurements performed "on demand", taking roughly one minute
- Emittance achieved: ~40pm

Magnet Alignment and Survey as of 12/02/2009

Bend roll $\sigma \sim 150 \mu rad$

Measured BPM Tilt

J. Shanks / Low-Emittance Tuning at CesrTA

November/December 2009 Run

New Digital BPMs: Orbit, Dispersion Reproducibility Digital BPM system switchover 90% complete for December 2009 run

Intrinsic orbit/dispersion resolution:

New Digital BPMs: Coupling Reproducibility

Using resonant excitation method

"AC Dispersion" Measurements

<u>Overview</u>

- Image synchrotron radiation with photodiodes
- Measure vertical beam size nondestructively
- Capable of measuring every bunch, every turn
 - Currently 14ns between bunches; soon 4ns

- Live beam size updates to control room

 Updates every ~2s
- Electronics upgrade for 4ns bunch spacing progressing
 - Redesigned amplifier
 - New data acquisition unit

Output of new amplifier with 4ns bunch spacing in CESR

Beam size chart in CESR control room

- New optics-- increased β_v at xBSM source from 5.8m to 17m
 - Yields better resolution
- Standard tuning technique:
 - Measure/correct:
 - Orbit
 - Phase/coupling
 - Measure η_v , remeasure orbit; correct together
 - Remeasure coupling, η_v ; correct together

Low-Emittance Tuning: Continued

- With standard tuning technique, measure beamsize $\sigma_v = 45 \mu m$
- Set bunch-by-bunch feedback gain to zero
 - **Big effect**-- reduces beamsize by a factor of 1.5 (45 μ m to 30 μ m)
 - Corresponds to $\varepsilon_v = 49 \text{pm}$ (with $\beta_v = 17 \text{m}$ at xBSM source)
 - Cross-check using original optics ($\beta_v = 5.8m$ at xBSM source)
 - Measure $\sigma_v \sim 16 \mu m$; corresponds to same ϵ_v
 - Implies we are not at the resolution limit of the detector in the new optics
- Turn off feedback amplifiers
 - Not as significant as zeroing feedback, but noticable (~2 μ m reduction)
- Tune scan
 - Real-time tune scan of beamsize is possible with xBSM
 - Minimum beamsize is not at our present working point!

Beam Size vs. Tunes

Present operating point

Beam Size vs. Tunes

Smallest beamsize

Largest beamsize

- 20pm vertical emittance target requires RMS η_v < 1cm
- To measure η_v to within RMS 1cm accuracy, we need to calibrate:
 - BPM gain errors to <1%
 - BPM tilts to < 10mrad
- Current plan for calibration:
 - Gain mapping for BPM button gains
 - Use in-phase elements of Cbar coupling matrix for BPM tilts

• Summary / Review:

- Technique originally developed at KEK
- The response of each button (b_i) to the passage of a bunch at (x,y) is modeled by solving the 2D Poisson equation
- Measure a grid of orbits covering the cross-section of a BPM
- Fit model b_i's to measured b_i's to determine button gains:

$$\chi^{2} = \sum (b_{ij}^{(meas)} - b_{ij}^{(model)})^{2}$$
$$b_{ij} = g_{i} \cdot I_{j} \cdot F_{i}(x_{j}, y_{j})$$

• First Results:

- Fitted gains are only consistent to ~5% level between consecutive data sets
- Simulations suggest we should be capable of fitting gains to within ~fraction of a percent
- Still determining why these results aren't converging

New Gain Map Approach: Using TBT Data

• Advantages:

- Uses Turn-By-Turn (TBT) data with fast acquisition time
 - We can incorporate gain corrections into standard LET procedure
- Valid to second order
- Independent of any BPM nonlinear response model F(x, v)

Button data generated with nonlin BPM on 9mm x 5mm grid

New Gain Map Approach: Formalism

Signal at each button depends on bunch current (*k*) and position (*x*,*y*) $B_1 = kf(x, y)$

$$B_1 \approx k \left(f(0,0) + \frac{\partial f}{\partial x} x + \frac{\partial f}{\partial y} y + \frac{1}{2} \frac{\partial^2 f}{\partial x^2} x^2 + \frac{1}{2} \frac{\partial^2 f}{\partial y^2} y^2 + \frac{\partial^2 f}{\partial x \partial y} x y + \ldots \right)$$

$$B_1 \approx k (c_0 + c_1 x + c_2 y + c_3 x^2 + c_4 y^2 + c_5 x y)$$

Signals on the four buttons are related by symmetry:

$$B_2 = kf(-x,y) \ B_3 = kf(x,-y) \ B_4 = kf(-x,y)$$

Combining sums and differences we find the following relationship, good to second order

$$B_1 - B_2 - B_3 + B_4 = \frac{1}{k} \left(\frac{c_5}{c_1 c_2} \right) (B_1 - B_2 + B_3 - B_4) (B_1 + B_2 - B_3 - B_4)$$

$$B(+--+) = \frac{c}{k}B(+-+-)B(++--)$$

New Gain Map Approach: First Tests with Actual Data

New Gain Map Approach: Summary of Fitted Gains

PRELIMINARY

*4 BPMs above cutoff on these plots

Apply Gains to Coupling Data

J. Shanks / Low-Emittance Tuning at CesrTA

Apply Gains to η Data

Dispersion without gain correction

Dispersion with gain correction

VERY PRELIMINARY

Sextupole Steering Trims as Skew Quads

- Skew quads near arc wigglers would allow for coupling bumps in the arcs and further local coupling correction
 - Sextupoles have vertical steering trims
 - Reverse polarity of one winding
 - Very linear response for < 10mm orbit
 - Skew quad k~0.002/m² @ 14A

Summary

- Achieved $\sigma_v = 23\mu m < --> \varepsilon_v = 31pm$
- New gain map technique being developed. Next steps:
 - Implement corrections
 - Accurate determination of BPM tilts using in-phase coupling data
- Explore new working point:
 - Beam size vs. tune scan over a 2D grid
 - Beam size vs. RF voltage
 - Measurements are possible because of real-time xBSM readout
- New, more thoughtful sextupole distribution may help reduce some key resonances
- Vertical steering trims on sextupoles powered as skew quads? – Closed- η_v bumps in arc wigglers and further coupling correction
- Intensive magnet survey/alignment already underway in preparation for next run

Preliminary TBT Gain Map Results

Results of preliminary BPM data:

(03278100

J. Shanks / Low-Emittance Tuning at CesrTA

AC dispersion

Modeled dispersion bump in L0 wiggler straight


```
Modeled dispersion bump in arc
```


Measured effect of L0 η bump

Measured effect of arc η bump

3MV, 8MV RF

Realistic Dipole, Quad Errors

Quad y-offset: 134 micron Quad tilt: 300 micro-radians Bend rolls: 150 micro-radians Sextupole y-offset: 300 micron

1% Sextupole K2 Errors

[K2] errors = 0.012 = 1%

