
John Marshall, 1

John Marshall,

University of Cambridge

LCWS, Beijing, March 2010

John Marshall, 2

 In a typical jet:

 60% of jet energy is in the form of charged hadrons

 30% is in photons (mainly from 0)

 10% is in neutral hadrons (mainly n and KL)

 Particle flow calorimetry aims to improve jet energy resolution by:

 Measuring charged particles in detector tracker (essentially
perfectly)

 Measuring photon energies in the ECAL sE/E < 20% / E(GeV),

 Only measuring neutral hadron energies in the HCAL, largely
avoiding the intrinsically poor HCAL resolution.

Pandora PFA

EJET

sE/E
(rms90)

45 GeV 3.7 %

100 GeV 2.9 %

180 GeV 3.0 %

250 GeV 3.1 %

 The Pandora Particle Flow Algorithm:

 Initially developed for the ILD detector concept.

 The most mature PFA, giving the best performance.

 Its algorithms are now well tested and understood.

 Fully documented, NIMA 611 (2009) 25-40

 Meets ILC jet energy goal of ~3.5 % at all relevant jet energies.

EJET = EECAL + EHCAL

n
+

EJET = ETRACK + E + En

John Marshall, 3

Pandora Redesign
 Whilst Pandora works well, current code has reached a point where it is extremely difficult to extend. It is

not flexible enough to try out new ideas and improvements...

 ILD Letter of Intent version of Pandora has been frozen and a new version is being written from scratch.

 This is much more than just a re-implementation; Pandora is now a framework for running decoupled
particle flow algorithms:

 Increased flexibility, designed to make it easy to try out new ideas

 Independent of any specific software framework and any specific detector details

 Properly designed code, taking findings from previous PFAs into account, makes it easier to maintain

 Easier for other people to get involved; simple for users to create and run their own algorithms

 Pandora framework helps separate physics in particle flow algorithms from C++ memory management

 The new Pandora is a separate library, with no dependencies. A user application, in any framework, accesses
the library via a simple C++ API (application programming interface).

Will now give an overview of new Pandora framework, summarise current status and present first results...

John Marshall, 4

New Pandora Structure

Specify Geometry

Create Calo Hits

Create Tracks

Create MC Particles

Register User Algorithms

Clustering Algorithm

Topological Associations
Algorithm

Statistical Reclustering
Algorithm

Photon ID Algorithm

Fragment Removal
Algorithm

Track-cluster Association
Algorithms

PFO Construction
Algorithm

Pandora

Algorithm
Manager

Calo Hit
Manager

Cluster
Manager

MC
Manager

Geometry
Helper

Pandora
Settings

Track
Manager

Particle
Flow

Object
Manager

Get Particle Flow Objects

User Application: Pandora Framework,
can treat as “black box”:

Pandora Algorithms:

P
an

d
o

ra
 A

P
I

P
an

d
o

ra C
o

n
ten

t A
P

I

John Marshall, 5

Pandora API

 To run Pandora, a user needs to write a small
application in their chosen software framework.

 This application uses the PandoraAPI to supply
Pandora with details of the detector geometry and
of the calo hits and tracks in each event.

 Pandora then builds its own simple objects.

 Construction of these objects is simple; the user
makes a Parameters class, fills the member
variables and then calls the API Create function.

 Example member variables for a track:
d0, z0, track state at start, track state at ECal, etc.

 All member variables must be specified, or an
exception will be thrown when Create is called.

 The user can provide this information in any
order, then call the API ProcessEvent function.

 Finally, user calls the API GetParticleFlowObjects
function.

Pandora API

Pandora
Calo Hit
Manager

Cluster
Manager

Track
Manager

MC
Manager

Particle Flow
Object

Manager

User Application, e.g. ILDPandora

PandoraApi::Track::Parameters parameters;

parameters.m_d0 = ...;

...

PandoraApi::Track::Create(pandora, parameters);

John Marshall, 6

Pandora Objects

C
al

o
 H

it • Position + normal vectors

• Calorimeter cell size

• Absorber material in
front of cell

• Time of first energy
deposition

• Calibrated energy (mip
equivalent, EM, Had)

• Layer + pseudolayer

• Hit type + detector region

• Density weight

• Surrounding energy

• IsDigital, IsIsolated +
IsPossibleMip flags

• Associated MC particle

• Associated user object

T
ra

ck • 2D impact parameters

• Momentum at d.c.a

• Particle mass

• Charge sign

• Start track state

• End track state

• ECal track state

• ReachesECal flag

• List of track state
projections to
calorimeter surfaces

• Associated cluster

• Associated MC particle

• Associated user object

• PFO formation flag

• “Clusterless” PFO
formation flag

C
lu

st
er • List of constituent calo

hits, ordered by
pseudolayer

• Mip fraction

• EM energy measure

• Had energy measure

• Initial direction

• Current direction

• Result of linear fit to all
hits in cluster

• Energy-weighted
centroid

• ShowerStart layer

• Shower profile
properties

• List of associated tracks

P
ar

ti
cl

e
F

lo
w

 O
b

je
ct • PDG Code

• Charge

• Mass

• Energy

• Momentum

• List of tracks

• List of clusters

Mixture of properties specified by user and value-added properties, but all simple and well defined physics quantities
for use in particle flow algorithms.

John Marshall, 7

Pandora Managers

Pandora
Calo Hit
Manager

Cluster
Manager

Track
Manager

MC
Manager

Particle
Flow Object

Manager

 Pandora Managers are designed to store named
lists of their respective objects.

 These objects can be accessed by the Pandora
Algorithms, which perform the reconstruction.

 The algorithms interact with the Managers in a
controlled way, via PandoraContentAPI, and the
Managers perform the memory management.

 At any instant each Manager has a “current” list,
which can be accessed by an algorithm.

 Parent algorithms can manipulate the current list
in order to control scope and behaviour of
daughter algorithms.

 The Managers store information about currently
running algorithms so they can keep track of lists.

 Algorithms can use the PandoraContentAPI to
modify lists and/or save new lists.

Algorithms can use the API without worrying about
how the managers work – separation of physics and C++

memory management!

Pandora Content API

e.g. Clustering Algorithm

John Marshall, 8

Pandora Algorithms
 In the new Pandora framework, the algorithms contain almost exclusively physics-driven code, alongside the following

typical usages of the PandoraContentAPI:

 Create new clusters and particle flow objects

 Modify clusters, by adding hits, merging or deleting

 Access the current lists of Pandora objects

 Save new lists of clusters, calo hits or tracks

 Run a daughter algorithm, etc...

 Static helper functions are provided to perform tasks that are useful to multiple algorithms, such as functions to
evaluate the overlap between two clusters or to perform a linear fit to (layers of) a cluster.

 The Pandora algorithms are configured via xml and can be swapped in/out without recompiling. The algorithms
required to reproduce old Pandora performance are:

 Clustering

 Topological associations

 Fragment Removal

 Photon Id

 Statistical reclustering

 Track-cluster association

 Particle flow object formation

John Marshall, 9

 To reproduce original Pandora clustering algorithm in new framework, require:

i. A parent algorithm to control operations,

ii. A cluster formation algorithm,

iii. A topological association algorithm (which may itself run multiple daughter algorithms).

 Parent algorithm asks to run a clustering algorithm; cluster manager then creates a new temporary cluster list,
associated with the parent algorithm, sets this as “current”, and allows new clusters to be formed.

 Daughter clustering algorithm gets current calo hit and track
lists, uses its logic to populate temporary cluster list and
returns control to parent algorithm.

 Parent algorithm then calls topological association algorithm,
which cannot form new clusters, but can modify or merge
existing clusters.

 Parent algorithm can then save (a subset of) the temporary clusters as a new named cluster list. Can set new list to be
the current list for future algorithms, if desired. Any remaining temporary cluster s will be tidied automatically.

Example Algorithm: Clustering

John Marshall, 10

Change clustering parameters and/or clustering
algorithm until cluster splits and get sensible

track-cluster match

10 GeV Track

30 GeV

12 GeV

18 GeV

i. Identify inconsistent pairing of track and cluster(s) and ask to
recluster these.

• Relevant clusters will be moved to a new temporary cluster
list, associated with the parent algorithm. Current calo
hit/track lists changed.

ii. Ask to run a clustering algorithm.

• This will create another uniquely named temporary cluster
list, which will be filled by the daughter clustering algorithm.

iii. Calculate a figure of merit for the consistency of the track and
new cluster(s).

iv. Repeat stages ii. and iii. as required.

• Can run copies of the same algorithm, with different
clustering parameters, or use entirely different approaches.

v. Choose most appropriate cluster(s).

• Cluster lists will be reorganised and tidied accordingly.

 An important part of the Pandora reconstruction is “statistical reclustering”, in which attempts are made to redistribute
hits between clusters in order to improve consistency between cluster energies and associated track momenta.

 The new algorithm framework and idea of parent algorithms controlling daughter algorithms is designed to make
reclustering simple and flexible. A parent reclustering algorithm needs only to perform following operations:

Example Algorithm: Reclustering

John Marshall, 11

Algorithm Configuration

 Pandora will provide a comprehensive library of built-in algorithms. However, want other people to get involved:

 Quick and easy for a user to create their own algorithm. We provide a template; just need to inherit from the
Pandora Algorithm base class. User then calls functions available via API and implements their algorithm logic.

 The new type of algorithm is registered with Pandora via an API. User then just needs to add the algorithm settings
to the xml file (there is an XmlHelper to make reading these settings very easy).

 The algorithm will then run in the Pandora framework, without needing to recompile Pandora.

<!-- Parent reclustering algorithm runs multiple clustering algorithms -->

<algorithm type = "Reclustering”>

<!-- List of daughter clustering algorithms -->

<clusteringAlgorithmList>

<algorithm type = "ClusteringType1”> ClusteringType1 parameters ... </algorithm>

<algorithm type = "ClusteringType2”> ClusteringType2 parameters ... </algorithm>

<algorithm type = "ClusteringTypeN”> ClusteringTypeN parameters ... </algorithm>

</clusteringAlgorithmList >

<!-- Other parent reclustering algorithm properties ... -->

</algorithm>

 Pandora algorithms are configured via xml, a very natural way to configure nested algorithms:

 Ideal for quickly experimenting with running new algorithms, or exploring new methods to address problems such
as leakage. Easy to mix “real” and “cheating” algorithms.

 The complicated process of reclustering is reduced to the following simple configuration:

John Marshall, 12

Algorithm Status
Clustering

 The main Pandora clustering algorithm is a cone-based
forward projective method.

 Working from innermost to outermost pseudolayer, the
algorithm either adds hits to existing clusters or uses them
to seed new clusters.

 This algorithm has been fully implemented in the new
framework and tested extensively; the new code exactly
reproduces the old Pandora clusters.

 This re-implementation was an opportunity to ‘clean up’ an
algorithm that had changed many times during
development; now more efficient.

 Code is clean and readable and have now fully separated the
framework/objects from the actual algorithm.

 Configuration options have been tweaked to identify
independent and physically motivated parameters.

John Marshall, 13

Algorithm Status
Topological Associations

Looping tracksCone associations Back-scattered
tracks

Track segment
pointing to shower

Track-like cluster
points back to

shower

Proximity

 The approach in Pandora is to err on side of splitting up
true clusters, then merge the clusters following a number
of topological rules.

 Each of these rules has been implemented via an
algorithm in the new Pandora framework.

 The algorithms essentially compare pairs of clusters,
applying a series of cuts to identify whether the clusters
should be merged.

 Many of the quantities, upon which cuts are placed, are
useful properties characterising cluster interactions.
As such, they are calculated by re-usable helper functions.

 The algorithms have been validated and they fully
reproduce the performance of the old Pandora code.

 During this process, some improvements were identified
and these have been implemented. The improvements
were cross-checked using old Pandora .

John Marshall, 14

Algorithm Status
Track-Cluster Associations

 The basic method for associating tracks to clusters is to
examine the distance of closest approach between a
cluster and the projected track state at the ECal.

 Algorithms have also been implemented that consider
the following:

 The distance between clusters and the projection
of a track helix fit.

 The consistency of projected track directions and
initial cluster directions.

 The consistency of the track momentum and the
cluster energy.

 The newly implemented algorithms exactly reproduce
the performance of the old Pandora track-cluster
association code.

 In the new framework, it is simple to experiment with
new association methods or to alter the point(s) in the
reconstruction at which associations are made.

John Marshall, 15

Algorithm Status

9 GeV track

6 GeV
cluster

7 GeV cluster

Distance of closest
approach

9 GeV

9 GeV

6 GeV

Layers in close
contact

5 GeV

3 GeV

4 GeV

Distance to
track extrap.

9 GeV

6 GeV

3 GeV

Fraction of energy
in cone

Fragment Removal

 After the topological associations, there are still a
significant number of neutral clusters, which are really
fragments of charged particle hadronic showers.

 The fragment removal algorithms attempt to identify
these clusters and merge them with the appropriate
parent charged cluster.

 Associations are made by assessing cluster contact and
proximity, together with track association information.

 Many of the quantities used to identify fragments have
been implemented as re-usable helper functions.

 An algorithm has also been implemented to collect
together the fragments of neutral hadron clusters.

 The fragment removal algorithms have been fully
implemented and validated. They exactly reproduce the
performance of the old Pandora code.

John Marshall, 16

Algorithm Status
Photon ID

 The old version of Pandora offered several approaches to
photon cluster identification.

 In the new Pandora, a fast photon id helper function has
been provided, which reproduces the basic photon id
from the old code.

 Shower profile id helper functions have also been
provided.

 Peter Speckmayer has been working on a separate
algorithm, which takes the output from the clustering
algorithm, applies a shower-profile based selection and
saves the photon clusters as a separate named cluster list.

 The removal of these clusters allows for improved
identification of hadronic showers when the clustering
algorithm is called again.

 Can simply “plug-in” this algorithm to provide an
alternative photon ID, without changing any other code.

Note: performance plots shown later use only fast photon id.

Photon cluster

Charged hadron cluster

John Marshall, 17

 The final step is to identify the particle flow objects from
the tracks and clusters and to write them out for analysis.

 The current PFO formation algorithm is rather simple,
with no sophisticated particle identification yet applied.

 In the long term, aim to provide particle identification
functions and to allow user to register their own, detector
specific, particle id helper functions via PandoraAPI.

 In the current code, charged PFOs are created from tracks
with associated clusters; remaining clusters are used to
form neutral PFOs.

 Tracks which have no associated clusters, but which are
deemed to be low pT, are still used to form charged PFOs.

 Fast photon id is used to determine whether neutral PFOs
should use electromagnetic or hadronic energy measure.

 The PFO creation is ready to respond to any track
relationship information provided to identify track kinks,
v0s, etc.

Algorithm Status
PFO Formation

neutral hadron
charged hadronphoton

John Marshall, 18

Remaining Work

 Algorithms that “steer” the reclustering have been
implemented and observed to work. However, no formal
validation yet.

 Want to spend some time here, deviating from original
Pandora, to tidy these steering algorithms and more clearly
define the role of each.

 Have designed some better defined algorithms that should
match (or improve on) performance of old code.

12 GeV 32 GeV

18 GeV

30 GeV Track

38 GeV

If these hits are clustered together with
these, lose energy deposit from neutral
hadron (now part of track particle) and
ruin jet energy measurement.

e.g.

 At high jet energies, performance degrades due to increasing overlap between hadronic showers from different particles:

 Pandora addresses this problem with statistical reclustering, illustrated earlier.

 Clusters that have been incorrectly merged together are identified via consistency of cluster energy and associated
track momentum.

 Attempts are made to redistribute the hits by using different clustering parameters or entirely different clustering
algorithms.

John Marshall, 19

Remaining Work

Leakage correction

Track relationship information

 New Pandora code deals with specified track parent, daughter
and sibling relationships.

 Uses this information when associating tracks to clusters and
when forming charged PFOs. However, have yet to input this
information.

 Have external v0 and kink finder code for ILD. Simply need to
pass information to Pandora and test thoroughly – should see
immediate improvement in jet energy reconstruction.

 For high energy jets, non-containment of showers is significant.

 To address this issue, first need identification of clusters exiting the
detector. Can then use this information when e.g. considering track-
cluster consistency in reclustering.

 May reproduce old Pandora use of muon chamber information to
estimate leakage and energy deposition in the coil, before using
flexibility of new framework to investigate new ideas.

John Marshall, 20

First Results 91GeV

 First tests were performed for the ILD detector concept, using MC samples of approximately 10,000 Z uds generated
with the Z decaying at rest with Ez = 91.2GeV.

 At this energy, all newly implemented code and framework is exercised, without (a strong) need for statistical
reclustering and/or leakage corrections.

 For fair comparison, reclustering, leakage corrections and all use of track-relationship information was turned off in old
Pandora (all still work in progress for new Pandora).

 Excellent agreement observed, by construction (and a lot of hard work!).

sE / E (rms90) = 3.79%
c.f. old Pandora 3.87% without reclustering and track relationship information

|cos | < 0.7All Events

John Marshall, 21

First Results 91GeV

 Looking at the 91GeV results in more details, see
that PandoraPFANew reproduces not just the
total jet energy, but also the division into charged
and neutral PFOS.

 In fact, each PFO is (essentially) identical in its
composition and energy measure.

 There are, however, some small known and
understood differences, where it has been
necessary to use slightly different approach.

Charged PFOs Neutral PFOs

PFO energy sum,
old vs. new

John Marshall, 22

First Look at Higher Energies

200 GeV,
|cos | < 0.7

 These plots give only a first indication of performance at
higher energies.

 Close agreement observed between new and old code,
for the algorithms that have been implemented.

 Can’t use as a measure of performance yet, as important
details for high energy missing.

 Remaining work involves reproducing (and improving
on) full treatment of high energy events provided by the
old Pandora code.

360 GeV,
|cos | < 0.7

500 GeV,
|cos | < 0.7

John Marshall, 23

Summary
 The new Pandora framework is complete and has been rigorously tested. It is stable and has been unchanged for

several months now.

 The majority of original Pandora algorithms have now been fully implemented and tested, providing a full
reconstruction (and exact reproduction of old Pandora results) at low energies.

 Now need to address high energy issues; work on leakage corrections and statistical reclustering.

 Will start to deviate from the old Pandora approach in reclustering, as aim for better defined algorithms that
match (or improve on) original performance.

 Should also mention progress with the applications that use the Pandora library:

 ILD Pandora application completed (our default test application),

 Norman Graf and Jeremy McCormick have started a SlicPandora application,

 Both applications are Marlin Processors that use the PandoraAPI to access the Pandora library.

 After the high energy reconstruction is complete, have many ideas for moving forwards and improving Pandora
within the new framework:

 New clustering algorithms,

 Long list of possible topological association improvements,

 More sophisticated particle identification,

 Very easy for other people to get involved and write new algorithms or contribute ideas.

