Track Segments within Hadronic Showers using the CALICE AHCal

Lars Weuste

Max Planck Institute for Physics

LCWS 2010 27.03.2010

1 CALICE

- 2 Tracking in hadronic showers
- 3 Transport of Calibration Constants
- 4 Monte Carlo Data comparison
- 5 Conclusion

CALICE	Tracking		sh
•	0000		

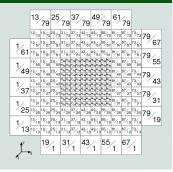
Monte Carlo - Data comparison

Conclusion

The CALICE Analog Hadron Calorimeter (AHCal)

AHCal Properties

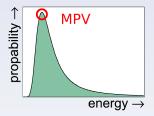
- similar to scintillator HCal of the ILD
- testbeams at DESY, CERN and FNAL
- highly granular ("imaging") calorimeter
- scintillator tiles with SiPM readout
- \blacksquare tile size: $3\times3\,\mathrm{cm}^2$ to $12\times12\,\mathrm{cm}^2$
- 38 layers of steel absorber $\Rightarrow \approx 5.3 \lambda$


SiPM / AHCal layer

layer structure

CA	IC	Е
\sim		

Tracking in hadronic showers


Transport of Calibration Constants

Monte Carlo - Data comparison 00000000 Conclusion

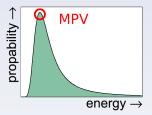
Calibration of HCal

Passage of MIPs through thin matter

- Energy deposition: Landau distribution.
- Most Probable Value (MPV) can be used for calibration

C)	٩L	10	CE	
\sim				

Tracking in hadronic showers


Transport of Calibration Constants

Monte Carlo - Data comparison 00000000 Conclusion

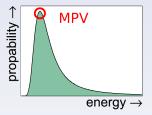
Calibration of HCal

Passage of MIPs through thin matter

- Energy deposition: Landau distribution.
- Most Probable Value (MPV) can be used for calibration

Classical Approach

Calibration using μ data (cosmics)


CALICE	Tracking in hadronic showers
	0000

Monte Carlo - Data comparison 00000000 Conclusion

Calibration of HCal

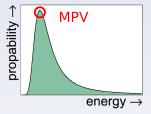
Passage of MIPs through thin matter

- Energy deposition: Landau distribution.
- Most Probable Value (MPV) can be used for calibration

Classical Approach

Calibration using μ data (cosmics)

- 8,000,000 channels, power pulsing, underground location
- ⇒ Difficult to achieve


ng in hadronic showers	Transport of Calibrati
	0000

Monte Carlo - Data comparison 00000000

Calibration of HCal

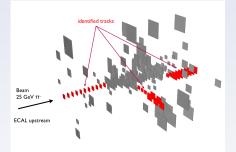
Passage of MIPs through thin matter

- Energy deposition: Landau distribution.
- Most Probable Value (MPV) can be used for calibration

Classical Approach

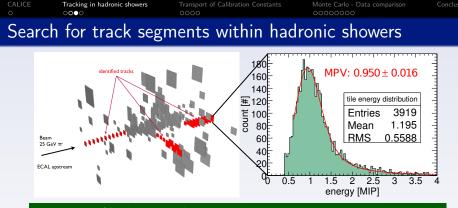
Calibration using μ data (cosmics)

- 8,000,000 channels, power pulsing, underground location
- ⇒ Difficult to achieve

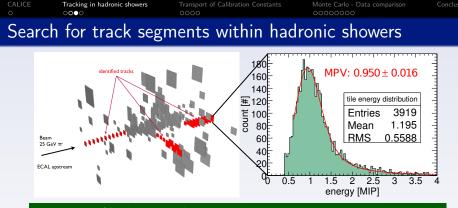

Idea

- Search for track segments of isolated particles (MIP) in hadronic showers
- $+\,$ Powerful tool sensitive to spatial structure of hadronic showers

CALICE	Tracking in hadronic showers
	000


Monte Carlo - Data comparison 00000000 Conclusion

Isolated track segments in hadronic showers


Hadronic showers are broad and sparse

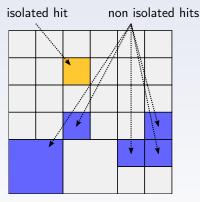
- \Rightarrow Many MIPs leaving the shower core
- \Rightarrow Many cells only hit by isolated particle
- ⇒ Identification of track segments possible CALICE: B = 0 ⇒ non-curved track segments

Properties of hadronic track segments

- Isolated hits: ⇒ MIP ⇒ Landau-Distribution
- Sensitive to spatial structure (shower tail)
- Applications:
 - Detector studies (e.g. SiPM temperature dependency)
 - Transport of calibration constants
 - Comparison of Monte-Carlo simulation to testbeam data

Properties of hadronic track segments

- Isolated hits: \Rightarrow MIP \Rightarrow Landau-Distribution
- Sensitive to spatial structure (shower tail)
- Applications:
 - Detector studies (e.g. SiPM temperature dependency)
 - Transport of calibration constants
 - Comparison of Monte-Carlo simulation to testbeam data

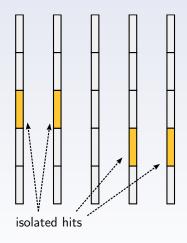

CALICE	Tracking in hadronic showers
	0000

Monte Carlo - Data comparison 00000000 Conclusion

Searching for MIP tracks: "Follow-Your-Nose"

Algorithm

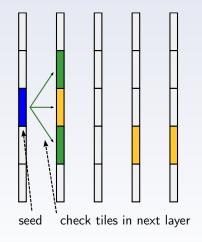
Find all isolated hits / layer (to reject cells hit by more than 1 particle)


CALICE	Tracking in hadronic showers
	0000

Monte Carlo - Data comparison 00000000 Conclusion

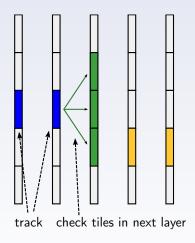
Searching for MIP tracks: "Follow-Your-Nose"

Algorithm


Find all isolated hits / layer (to reject cells hit by more than 1 particle)

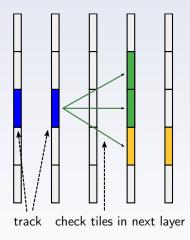
Monte Carlo - Data comparison 00000000 Conclusion

Searching for MIP tracks: "Follow-Your-Nose"


- Find all isolated hits / layer (to reject cells hit by more than 1 particle)
- 2 Search for track continuation in subsequent layer

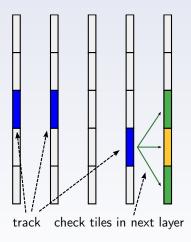
Monte Carlo - Data comparison 00000000 Conclusion

Searching for MIP tracks: "Follow-Your-Nose"


- Find all isolated hits / layer (to reject cells hit by more than 1 particle)
- 2 Search for track continuation in subsequent layer
- 3 Gaps will be jumped over

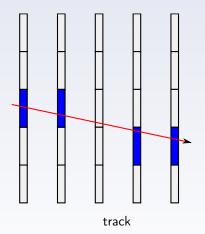
Monte Carlo - Data comparison 00000000 Conclusion

Searching for MIP tracks: "Follow-Your-Nose"


- Find all isolated hits / layer (to reject cells hit by more than 1 particle)
- 2 Search for track continuation in subsequent layer
- **3** Gaps will be jumped over

Monte Carlo - Data comparison 00000000 Conclusion

Searching for MIP tracks: "Follow-Your-Nose"


- Find all isolated hits / layer (to reject cells hit by more than 1 particle)
- 2 Search for track continuation in subsequent layer
- **3** Gaps will be jumped over

Monte Carlo - Data comparison 00000000 Conclusion

Searching for MIP tracks: "Follow-Your-Nose"

- Find all isolated hits / layer (to reject cells hit by more than 1 particle)
- 2 Search for track continuation in subsequent layer
- 3 Gaps will be jumped over
- 4 Redo until no continuation hit can be found ⇒Finished track

CALICE	Tracking in hadronic sh	
	0000	

Monte Carlo - Data comparisor 00000000 Conclusion

Application example: Transport of Calibration Constants

Scenario: Calibration of complete detector

- Challenges:
 - Underground location / power pulsing (active: 0.5% of time) $\Rightarrow \mu$ based calibration difficult
 - 8,000,000 channels
 - \Rightarrow hadronic tracking not sufficient

CALICE	Tracking in	showers
	0000	

Monte Carlo - Data comparisor 00000000 Conclusion

Application example: Transport of Calibration Constants

Scenario: Calibration of complete detector

- Challenges:
 - Underground location / power pulsing (active: 0.5% of time) $\Rightarrow \mu$ based calibration difficult
 - 8,000,000 channels
 - \Rightarrow hadronic tracking not sufficient
- Initial calibration of a set (module) of cells (pprox 150) off site
- Install module into detector
- Maintain module-to-module intercalibration

CALICE	Tracking in	showers
	0000	

Transport of Calibration Constants $\circ \circ \circ \circ$

Monte Carlo - Data comparison 00000000 Conclusion

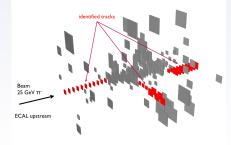
Application example: Transport of Calibration Constants

Scenario: Calibration of complete detector

- Challenges:
 - Underground location / power pulsing (active: 0.5% of time) $\Rightarrow \mu$ based calibration difficult
 - 8,000,000 channels
 - \Rightarrow hadronic tracking not sufficient
- \blacksquare Initial calibration of a set (module) of cells (\approx 150) off site
- Install module into detector
- Maintain module-to-module intercalibration

CALICE Test Scenario

- Use calibration constants from FNAL 2008
- Use data from CERN 2007
- Transform FNAL calibration to CERN conditions (*T*, *U*, ...)
- Reprocess CERN 2007 data with new calibration constant set


CALICE	Tracking in hadronic showers	Transport of Calibration Constants
	0000	0000

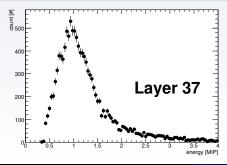
Monte Carlo - Data comparison 00000000 Conclusion

Use tracking to maintain module intercalibration

Method

1 Search for tracks

CALICE	Tracking in hadronic showers	Transport of Calibration Cons
	0000	0000

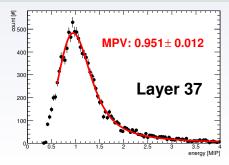

Monte Carlo - Data comparison 00000000 Conclusion

Use tracking to maintain module intercalibration

Method

- 1 Search for tracks
- 2 Create a single histogram for the energy deposition per module \Rightarrow Increase statistics by factor of ≈ 150

stants

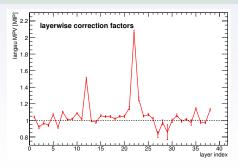

CALICE	Tracking in hadronic showers	
	0000	

Monte Carlo - Data comparison 00000000 Conclusion

Use tracking to maintain module intercalibration

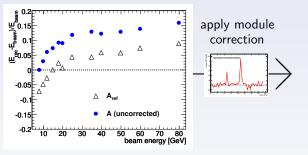
Method

- 1 Search for tracks
- 2 Create a single histogram for the energy deposition per module \Rightarrow Increase statistics by factor of ≈ 150
- **3** Fit with a Landau-Gauss convolution


CALICE	Tracking in hadronic showers
	0000

Monte Carlo - Data comparison 00000000 Conclusion

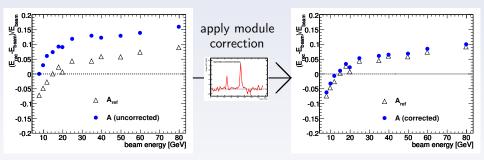
Use tracking to maintain module intercalibration


Method

- 1 Search for tracks
- 2 Create a single histogram for the energy deposition per module \Rightarrow Increase statistics by factor of ≈ 150
- **3** Fit with a Landau-Gauss convolution
- MPV of fit is correction factor

Relative deviation of reconstructed energy from beam energy

Requirement of full containment of showers in HCal lead to non-linear energy response



Monte Carlo - Data comparison

Conclusion

Relative deviation of reconstructed energy from beam

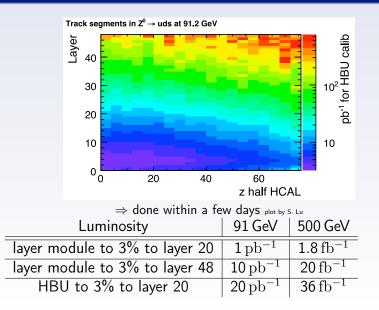
Requirement of full containment of showers in HCal lead to non-linear energy response

Conclusion

- Correction decreased the reconstructed energy deviation
- \Rightarrow track based module-to-module intercalibration possible
- \Rightarrow cell-to-cell intercalibration stable and temp correction under control

L. Weuste (MPP)

track segments in hadron showers


02.11.2009 8 /

8 / 18

CALICE	Tracking in hadronic showers	Transport
	0000	0000

Monte Carlo - Data comparison 00000000 Conclusion

Luminosity needed for Tracking Based Calibration at ILD

CALICE	Tracking in	showers
	0000	

Monte Carlo - Data comparison

Conclusion

Application example: Monte Carlo - Data comparison

Monte Carlo simulations

- Predictions of hadronic interactions difficult
- Different models exist for various energy regions ⇒ Combination of models necessary ("physics list")
- Until now: Use only the shower shapes to compare to data ⇒ Good agreement

CALICE	Tracking in	showers
	0000	

Monte Carlo - Data comparison

Conclusion

Application example: Monte Carlo - Data comparison

Monte Carlo simulations

- Predictions of hadronic interactions difficult
- Different models exist for various energy regions ⇒ Combination of models necessary ("physics list")
- Until now: Use only the shower shapes to compare to data ⇒ Good agreement

Using track finding algorithms

- + More detail on spatial structure
 - \Rightarrow Track properties can be used as comparison observable
 - Tracks consist of hits from single MIP like particles
 - \Rightarrow Sensitive to shower tail

CALICE O	Tracking in hadronic sho 0000	Transport of 0000	Calibration Constants	Monte Carlo - Data con ⊙●○○○○○○
				-

Conclusion

mparison

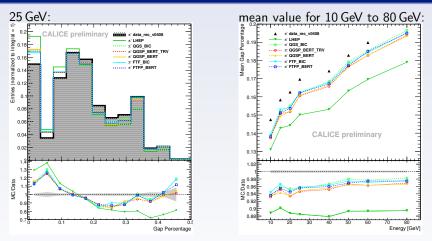
Application example: Monte Carlo - Data comparison

Simulation: Mokka/Geant4 with physics lists:

QGSP_BERT
QGSP_BERT_TRV
QGS_BIC
LHEP
FTF_BIC
FTFP_BERT

comparison observables

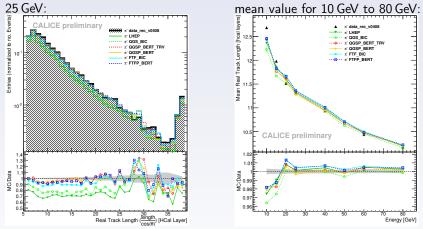
- track gap ratio: sensitive to correct digitization
- track multiplicity: density and width of shower
- track angle: width of shower
- track length: shower length


Influence on PFA performance!

Monte Carlo - Data comparison

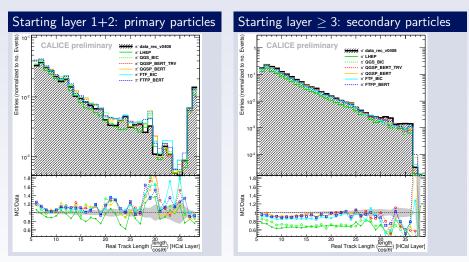
Conclusion

Monte Carlo - Data Comparison: track gap ratio


- Non intuitive structure reproduced in all cases
- Too few gaps in all cases \Rightarrow missing effect in digitization?
- Greatest discrepency for LHEP

Monte Carlo - Data comparison

Conclusion

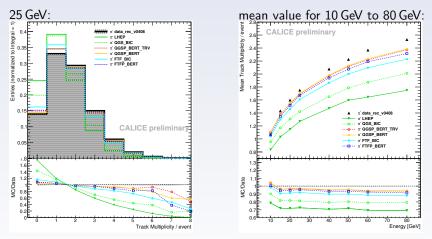

Monte Carlo - Data Comparison: track length

- All physics lists close to each other
- Good modelling of beam composition, well reproduced by all lists
- Discrepencies for low energies and for layer 30
- Exception: QGS_BIC and LHEP

L. Weuste (MPP)

Monte Carlo - Data Comparison: track length - Details

• primary particles: jump in layer $30 \Rightarrow$ different geometry

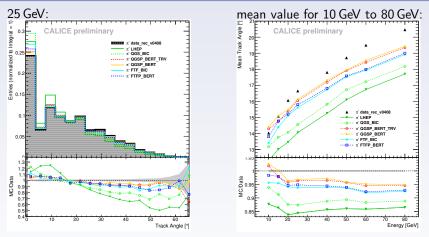

■ secondary particles: sensitive to cross section for high *E* particles ⇒ exponential decrease modelled well by all physics list

CALICE	Tracking in hadronic showers
	0000

Monte Carlo - Data comparison

Conclusion

Monte Carlo - Data Comparison: track multiplicity


- All physics lists create too few tracks at high energies
- Group: QGSP_BERT , QGSP_BERT_TRV , FTF_BIC , FTFP_BERT

Monte Carlo - Data comparison

Conclusion

Monte Carlo - Data Comparison: track angle

- Too low inclination for tracks of all physics lists
- Same grouping as with mulitplicity
- Biggest discrepency for LHEP and QGS_BIC

CALICE	Tracking in	showers
	0000	

Monte Carlo - Data comparison

Conclusion

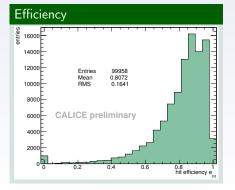
Comparison Data - Monte Carlo

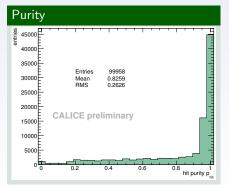
Conclusion

- Grouping of QGSP_BERT , QGSP_BERT_TRV , FTF_BIC and FTFP_BERT
 - No big discrepencies to testbeam data
 - mean value compares better than actual distribution
 - Choice of "best" physics lists difficult (QGSP_BERT(_TRV) ?)
- QGS_BIC and LHEP with great discrepencies in track multiplicity and angle
- possible missing effect in digitization

CALICE	Tracking in hadronic showers	Transport of Calibration Constants	Monte Carlo - Data comparison	Conclusion
Conc	lusion			

- Working track finding algorithm:
 - Follow-Your-Nose
- Transport of calibration constants possible
 - \Rightarrow Presented solution was well recieved by IDAG
- Found tracks provide observables for MC-Data comparison:
 - Sensitive to shower tails
 - Grouping of QGSP_BERT , QGSP_BERT_TRV , FTF_BIC and FTFP_BERT
 - LHEP and QGS_BIC provide too few tracks with too low angles
 - \Rightarrow Impact on Particle Flow performance

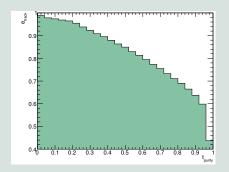

BACKUP


Efficiency

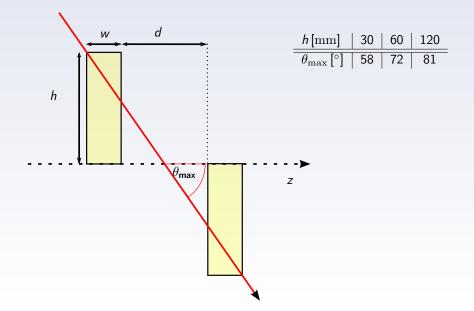
Efficiency determination

 \blacksquare Based on MC with μ

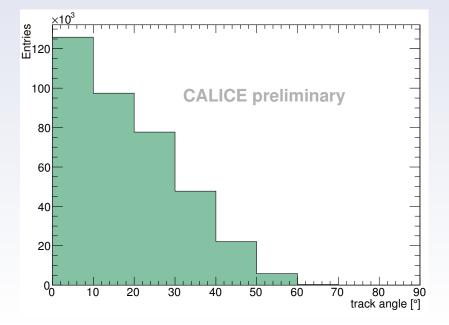
 $\Rightarrow\,$ Comparison of tracks found with real MC position

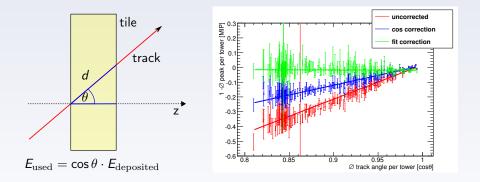


Efficiency

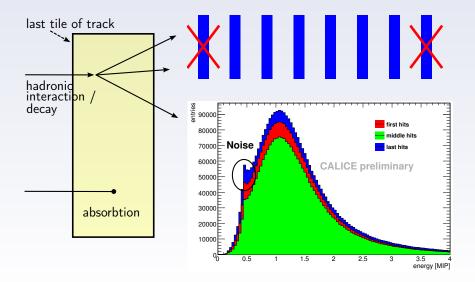

Efficiency determination

- \blacksquare Based on MC with μ
- $\Rightarrow\,$ Comparison of tracks found with real MC position
 - Efficiency in identifying parts of the muon track: 98,9%


Efficiency in Identification of muon tracks with purity $p > t_{purity}$

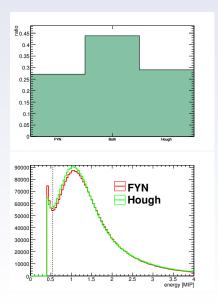


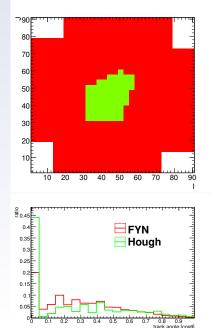
FYN: max angle



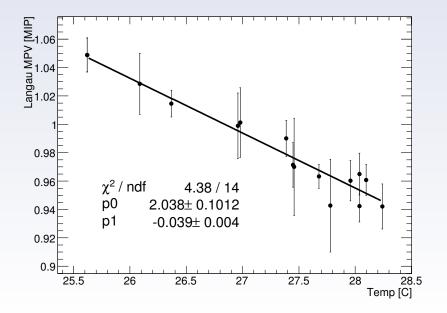
angle distribution



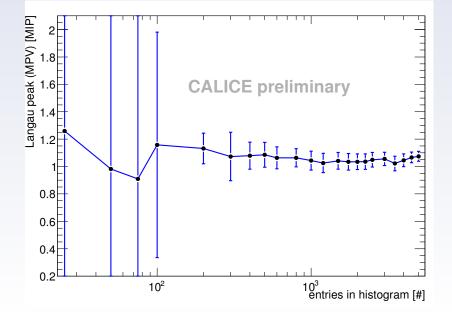

no first/last hit correction

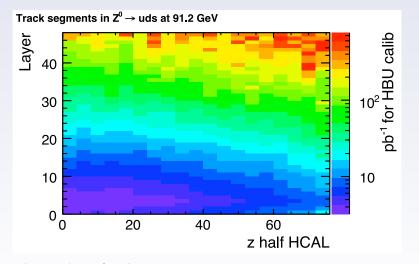


Hough Transformation based tracking



Differences FYN to Hough




SiPM temperature dependence

Langau: statistical fit errors

Luminosity needed for Tracking Based Calibration at ILD

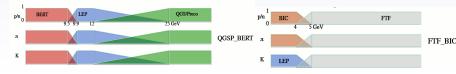
 \Rightarrow done within a few days $_{\text{plot by S. Lu}}$

Calibration Constant Transportation Calculation

2 possibilities:

$$A(\text{TU corr}) = A_{\text{FNAL}} + \frac{dA}{dT}\Delta T + \frac{dA}{dU}\Delta U$$

$$A(\text{G corr}) = A_{\text{FNAL}} + \frac{dA}{dG}\Delta G$$
(3)


- A Calibration constants
- T Temperature
- U SiPM applied Voltage
- G SiPM Gain

used parameters

- FYN algorithm with default settings
 - min length: 6 layers
 - max gap size: 1 layer
- GEANT4 version 4.9.3
- Mokka version 0703-p01
- Mokka model TBCern0707_p0709

Geant4 hadronic models and physics lists

- high energy ($E > 20 \, \text{GeV}$)
 - QGS: Based on Quark-Gluon-String theory model
 - FTF: Fritiof like theory model
- low energy ($E < 10 \, {
 m GeV}$) cascade models
 - Bertini
 - Binary
- $E < 10 \,\mathrm{MeV}$: Chiral Invariant Phase Space (CHIPS)
 - photo-nuclear and electro-nuclear
 - stopping negatively charged particles at rest in nuclei
- nucleus dexcitation: precompound model
- \blacksquare parametrized models: LEP and HEP \rightarrow LHEP
 - Based on GHEISHA from Geant3
 - Fast, but not as accurate as theory driven models
 - Used as backup if other models don't provide data

