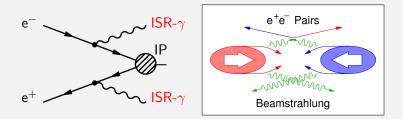
Consideration of Photon Radiation in Kinematic Fits for Future e⁺e⁻ Colliders

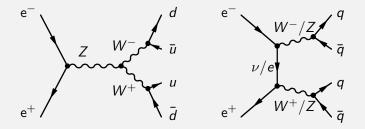
Moritz Beckmann, Benno List, Jenny List


DESY - FLC

March 29, 2010

- Energies & momenta of reconstructed particles measured with errors (due to limited detector resolution etc.)
- Event bound to constraints, e.g. energy conservation
- Use redundant information for correction: kinematic fit ⇒ Better detector resolution, e.g. for W mass @ LEP

Initial state radiation (ISR) and beamstrahlung



- Emitted mostly parallel to beam
- Missing energy and momentum
- Constraints incomplete \Rightarrow fit goes wrong

Introduction

Test sample

• Test sample to exemplify problem: $e^+e^- \rightarrow WW/ZZ(\sim 2\%) \rightarrow u\bar{d}d\bar{u}$ (4 hadron jets)

- Generated by WHIZARD, ILD_00 mass production
- $\sqrt{s}=500$ GeV, 100 fb $^{-1}$
- Jet quality cuts and "no γ seen in detector" ($heta_{\gamma} < 0.29^{\circ}$)
- Aim: separation of WW/ZZ by invariant di-jet masses

Moritz Beckmann

• LEP: Fit goes wrong, but deviations are small $(\Delta m \sim 100 \text{ MeV}, \text{ missing energy blows up masses})$ \rightarrow Simulate deviations with MC for correction afterwards

- LEP: Fit goes wrong, but deviations are small $(\Delta m \sim 100 \text{ MeV}, \text{ missing energy blows up masses})$ \rightarrow Simulate deviations with MC for correction afterwards
- ILC aims for higher CM energy and luminosity
 - more photon radiation
 - lose events (\sim 20%) due to not-converged fits
 - requires consideration of photon in the fit (new)

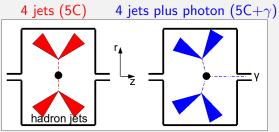
Modelling a photon in a kinematic fit Parametrization

- Parametrization via momentum: $p_x, p_y, p_z, (m = 0)$
- Only photons parallel to beam (are covered in this talk)
 ⇒ p_x, p_y negligible ⇒ set fix to 0

Modelling a photon in a kinematic fit Parametrization

- Parametrization via momentum: $p_x, p_y, p_z, (m = 0)$
- Only photons parallel to beam (are covered in this talk)
 ⇒ p_x, p_y negligible ⇒ set fix to 0
- Pseudo-measured fit object:
 - assume photon measured to $\vec{p} = 0$
 - error reflecting the momentum distribution
 ⇒ must feed photon momentum spectrum into fit
 - detail: parametrize $p_z^{\gamma}(p_g)$ such that p_g is approximately Gaussian-distributed for physical ISR spectrum

Modelling a photon in a kinematic fit Energy spectrum


• ISR energy spectrum given by power function:

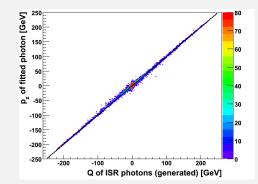
$$egin{array}{rcl} N_\gamma &\propto & E_{
m ISR}^{(b(s)-1)} \ &b &= & 0.1235 \ {
m for} \ \sqrt{s} = 500 \ {
m GeV} \end{array}$$

• Addition of beamstrahlung modifies ISR spectrum mostly at small energies (\lesssim 5 GeV) (will be considered later)

Results Fit hypotheses

• 2 fit hypotheses:

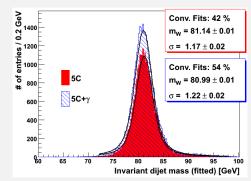
• 5 Constraints:


 $\begin{array}{ll} \#1 & E_{\mathsf{CM}} = 500 \; \mathrm{GeV} \; (\mathrm{energy \; conservation}) \\ \#2-4 & \sum p_{x,y,z} = 0 \; (\mathrm{momentum \; conservation}) \\ \#5 & \mathrm{equal \; invariant \; 2-jet \; masses} \\ & (\mathrm{pairing \; found \; by \; best \; fit \; convergence}) \end{array}$

- One photon *per beam* is simulated: If $E_{\gamma 1} \sim E_{\gamma 2}$, diverging energy and momentum constraints force 'compromise'
- Define

 $|Q| = 0.5 * \left(\sum E + |\sum p_z|\right)$

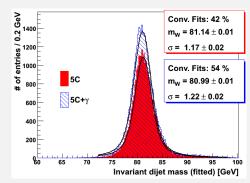
• *Q* corresponds to *p_z* of higher-energetic photon


- One photon *per beam* is simulated:
 If *E*_{γ1} ~ *E*_{γ2}, diverging energy and momentum constraints force 'compromise'
- Define
 - $|Q| = 0.5 * \left(\sum E + |\sum p_z|\right)$
- *Q* corresponds to *p_z* of higher-energetic photon

W/Z peaks smeared out with

- decay width (Breit-Wigner)
- detector etc. (Gaussian)

Fit function: sum of 2 Voigt functions (Breit-Wigner folded with Gauss)



W/Z peaks smeared out with

- decay width (Breit-Wigner)
- detector etc. (Gaussian)

Fit function: sum of 2 Voigt functions (Breit-Wigner folded with Gauss)

% of converged fits (wanted large) σ : Gaussian width (wanted small) m_w : W mass (wanted unchanged) missing energy blows up masses

Fit	conv.	$m_W - m_{W,Lit}$	σ
	[%]	[GeV]	[GeV]
5C	42	0.74	1.17
$5C+\gamma$	54	0.59	1.22
3C	55	0.88	2.02

- 3C: 4 jets, without E, p_z constraints
- Bad overall convergence due to equal-mass constraint and hadronization
- 5C loses $\approx 20\%$ of events in comparison to 3C
- 5C+ γ converges as good as 3C,
- but with the same resolution as 5C

Fit	$\sum E_{\gamma}$	conv.	$m_W - m_{W,Lit}$	σ
	[GeV]	[%]	[GeV]	[GeV]
5C		42	0.74	1.17
$5C+\gamma$		54	0.59	1.22
3C		55	0.88	2.02
5C	> 30	0	÷	÷
$5C+\gamma$	> 30	47	0.69	1.20

 $\sum E_{\gamma} >$ 30 GeV:

- 5C fails (too much energy missing)
- 5C+ γ loses few events, but no resolution

Fit	$\sum E_{\gamma}$	conv.	$m_W - m_{W,Lit}$	σ
	[GeV]	[%]	[GeV]	[GeV]
5C		42	0.74	1.17
$5C+\gamma$		54	0.59	1.22
3C		55	0.88	2.02
5C	\in [5, 30]	15	1.69	1.25
$5C+\gamma$	\in [5, 30]	53	0.76	1.24

5 GeV $< \sum E_{\gamma} <$ 30 GeV:

- 5C loses many events
- Bias towards higher W masses

Fit	$\sum E_{\gamma}$	conv.	$m_W - m_{W,Lit}$	σ
	[GeV]	[%]	[GeV]	[GeV]
5C		42	0.74	1.17
$5C+\gamma$		54	0.59	1.22
3C		55	0.88	2.02
5C	< 5	53	0.70	1.15
$5C+\gamma$	< 5	55	0.55	1.21

 $\sum E_{\gamma} < 5$ GeV: 5C and 5C+ γ perform equally well.

Results Fit performance

		Fit	conv.	$m_W - m_{W,Lit}$	σ
			[%]	[GeV]	[GeV]
		5C	42	0.74	1.17
ISR (only	$5C+\gamma$	54	0.59	1.22
		3C	55	0.88	2.02

Results Fit performance

	Fit	conv.	$m_W - m_{W,Lit}$	σ
		[%]	[GeV]	[GeV]
	5C	42	0.74	1.17
ISR only	$5C+\gamma$	54	0.59	1.22
	3C	55	0.88	2.02
ISR +	5C	31	0.99	1.25
beamstrahlung	$5C+\gamma$	52	0.81	1.32
	3C	55	0.88	2.02

Inclusion of beamstrahlung:

- 5C loses more events (more energy missing)
- 5C+ γ is affected only little

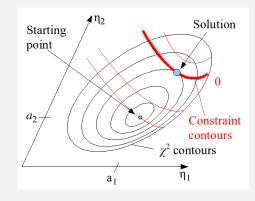
- Kinematic fitting software MarlinKinFit included in ILCSoft MarlinReco
- MarlinReco contains *PhotonFitObjectPxyg* class for approximation by power function (beta version)
- For other approximations: cooking recipe exists
- Documentation (publication, LCnote) in preparation

- Consideration of photon radiation yields
 - as many events as a fit without *E*, *p_z* constraints
 - without loss in resolution
 - without mass bias
- Ready for use

- Consideration of photon radiation yields
 - as many events as a fit without *E*, *p_z* constraints
 - without loss in resolution
 - without mass bias
- Ready for use
- Left for the future:
 - test with semi-leptonic decays
 - treat events with two high-energy photons
 - extend parametrization to beamstrahlung

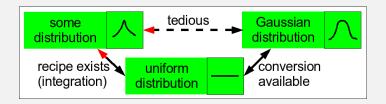
Many thanks for your attention!

• Fit needs underlying *hypothesis*: which *objects* are to be fitted?


- $e^+e^- \rightarrow WW \rightarrow q\bar{q}q\bar{q}$: 4 jets
- $e^+e^- \rightarrow WW \rightarrow q\bar{q}l\bar{\nu}$: 2 jets + lepton + ν
- Object represented by parameters

examples:

object	measured?	free parameters	fixed
hadron jet	measured	$E, \theta, \phi, \Delta E, \Delta \theta, \Delta \phi$	т
neutrino	unmeasured	p_x, p_y, p_z	т


Backup slides Kinematic fitting: general concept

- Vary free parameters slightly to fulfill constraints
- χ² ≥ 0: quantifies variation of parameters by measurement errors
- Task: Minimize χ² under constraints (smallest variation)

• Fitting algorithm designed for Gaussian error distribution

Idea: Replace p_z by parameter p_g such that photon momentum spectrum becomes Gaussian-shaped!

- Technical issue: Fitting algorithm needs derivatives of *E*, *p_i* w.r.t. parameters
 - \Rightarrow corresponding requirements to spectrum description

Moritz Beckmann

DESY-FLC

LCWS 2010