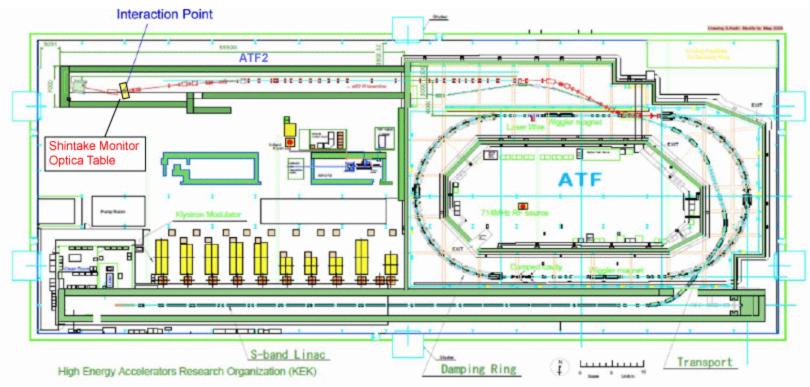


Shintake Monitor in ATF2 : Present Status

<u>T. Yamanaka</u>, M. Oroku, Y. Yamaguchi, Y. Kamiya, T. Suehara, S. Komamiya (The University of Tokyo) T. Okugi, T. Terunuma, T. Tauchi, S. Araki, J. Urakawa (KEK)

LCWS10 and ILC10

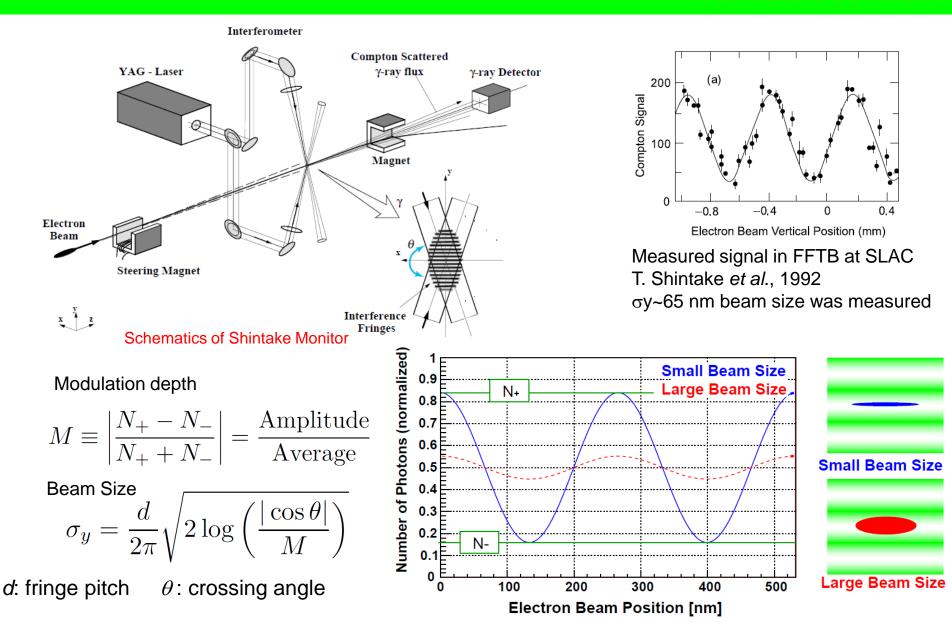
Beijing, China


March 28, 2010

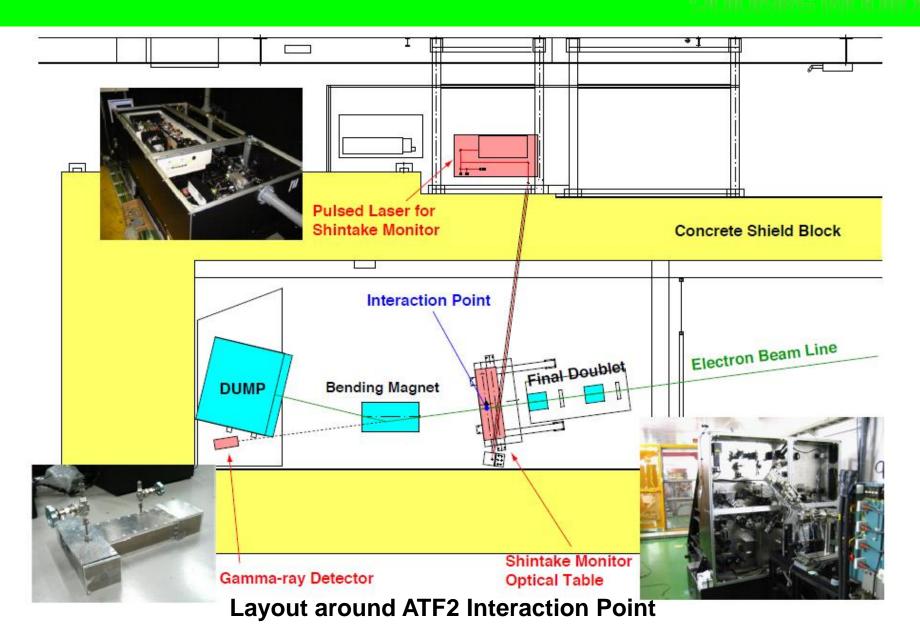
ATF/ATF2

ATF

- accelerate electron beam to 1.3 GeV
- normalized $\gamma \epsilon_v = 2.8 \times 10^{-8} \text{ m} \cdot \text{rad}$ achieved in the Damping Ring



Goals of ATF2


- Layout of ATF/ATF2
- focus the vertical beam size to 37 nm
- stabilize the vertical beam position in 2 nm resolution

Principle of Laser Interference Beam Size Monitor (Shintake Monitor)

Yamanaka@TheUniv.ofTokyo Shintake Monitor

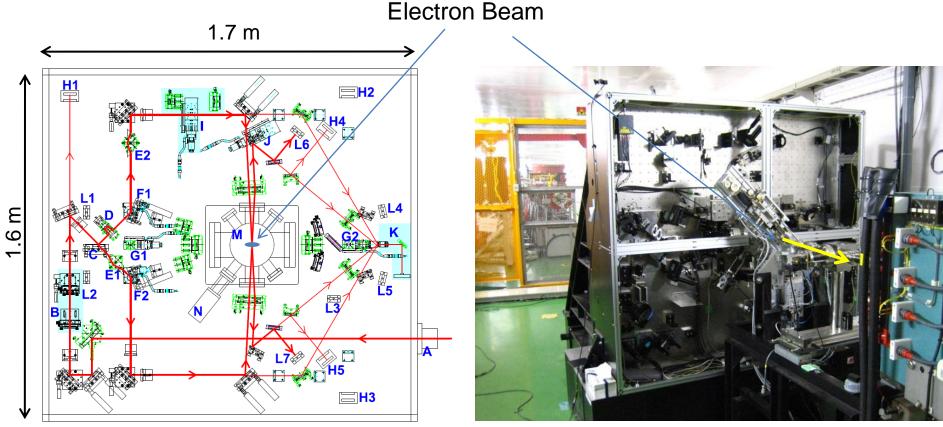
Components of Shintake Monitor Shintake Monitor

Yamanaka@TheUniv.ofTokyo

Laser System

Yamanaka@TheUniv.ofTokyo Shintake Monitor

Q-switched Nd:YAG Laser

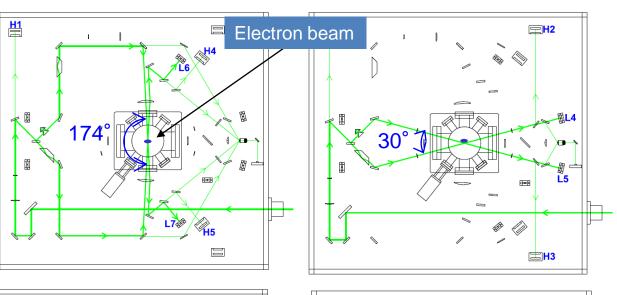

(wave length:1064 nm) PRO350 (SpectraPhysics)

Specifications	Value
Wave length (second harmonics)	532 nm
Line width	< 0.003 cm ⁻¹
Repetition rate	6.25 Hz
Pulse width	8 ns (FWHM)
Timing jitter	< 1 ns (RMS)
Pulse energy	1.4 J/pulse

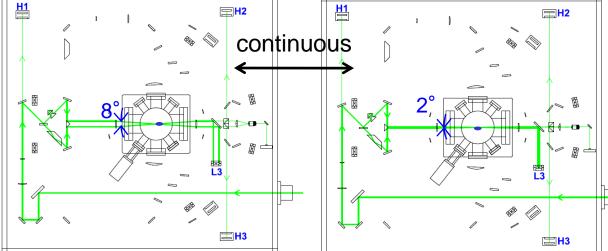
- To make smaller interference fringe, small wave length is needed. second harmonics 532nm
- High power laser is needed to raise S/N ratio.
 1.4J/pulse

Vertical Optical Table

Laser path diagram (174 deg crossing angle)


Picture of the vertical optical table installed at ATF2 beam line

Switch of Laser Crossing Angle


Issue of the Shintake Monitor

 ⇒ measurable beam size range is limited (7 – 40 % of fringe pitch), if the fringe pitch is fixed.

By changing the laser crossing angle, the measurable beam size range can be enlarged.

Yamanaka@TheUniv.ofTokyo

fringe pitch
$$d = \frac{\lambda}{\sin \frac{\theta}{2}}$$

 θ : crossing angle

Expected Beam Size Resolution

Expected resolution (statistical error) is evaluated by simulation considering the probable error sources

◇ in 25 nm ~ 6 µm range
: less than 12 %
◆ Systematic error also need to be evaluated.

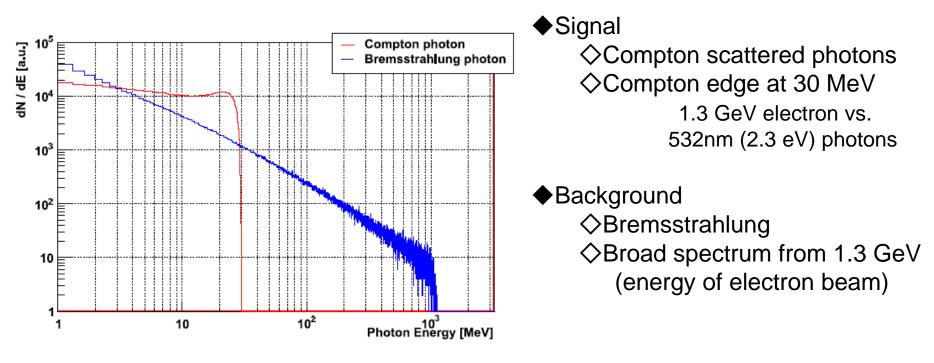
Simulation condition
Statistical error of the Compton scattered photons

(including background subtraction): 10%

Electron beam position jitter: 30 % of beam size

Yamanaka@TheUniv.ofTokyo

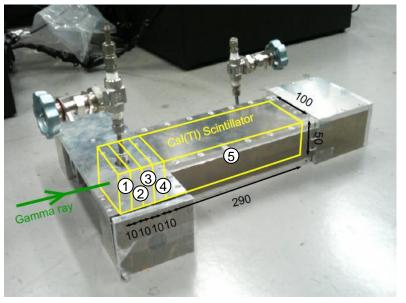
- Jitter of interference fringe phase: 400 mrad
- Jitter of laser pulse energy: 6.8%
- 1 measurement time : 1 min.

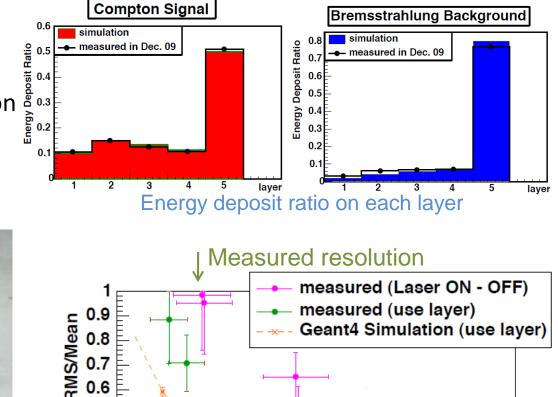

	174°	30°	8°	2°
Fringe pitch	266 nm	1.03µm	3.81µm	
Minimum	25 nm	100 nm	360 nm	
Maximum	100 nm	360 nm	-	

Detection of Compton Scattered Photons

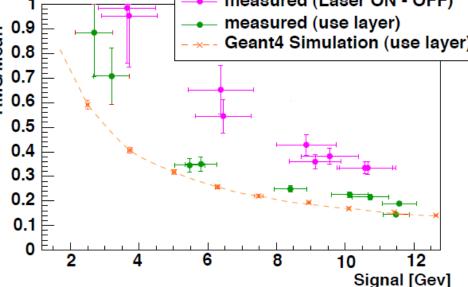
- Difficulty at ATF
 - Background photons have higher energy than the signal photons (Compton scattered photons).

Yamanaka@TheUniv.ofTokyo

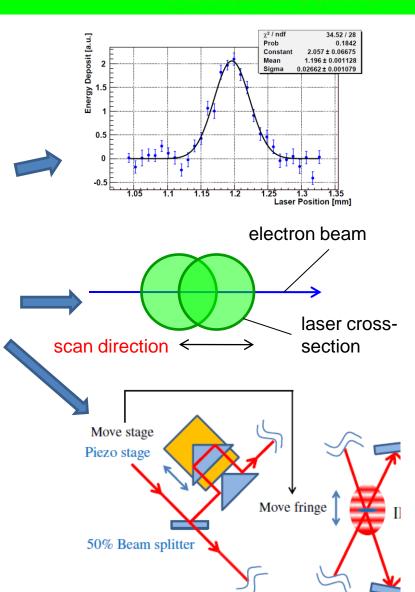

Shintake Monitor


Simulated Gamma-ray Energy Spectrum

Gamma-ray Detector


- Use multi-layerd calorimeter
 - CsI(TI), 4 thin layers + 1 bulk
- Calculate the amount of Compton signal and the background using the difference of energy deposit on each layer.

Multi layered gamma-ray detector



Yamanaka@TheUniv.ofTokyo

Measurement Procedure

- 1. Adjust the laser pulse and the electron beam timing
- 2. Scan the laser beam perpendicular to the electron beam axis
 - Then move two laser beams to the Compton signal peak position
- 3. Scan one laser beam in the electron beam axis and scan the laser phase
 - search the maximum interfering position
 - The present beam size is obtained from this maximum modulation depth
- 4. Then repeat the beam tuning and the beam size measurement

Yamanaka@TheUniv.ofTokvo

Measurement Result

Compton Signal / ICT Average 26.38 ± 0.2881 40 Modulation 0.3985 ± 0.00941 Phase -1.753 ± 0.04174 35 30 25 20 15 10 10 12 0 2 6 8 14 16 Phase [rad]

Example of the measurement (measured on 25 Feb. 2010)

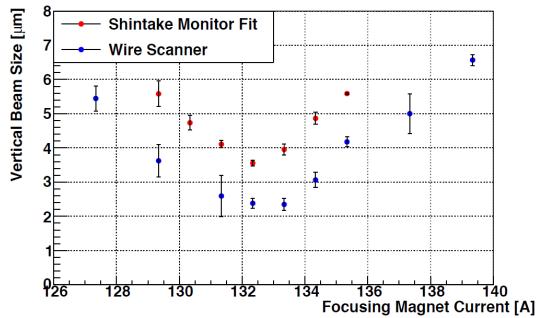
Beam condition

- β_x* ~ 4 cm (setting)
- $\beta_v^* \sim 1 \text{ mm}$ (setting)
- σ_x^* ~ 10 μ m (measured)

Yamanaka@TheUniv.ofTokyo

Shintake Monitor

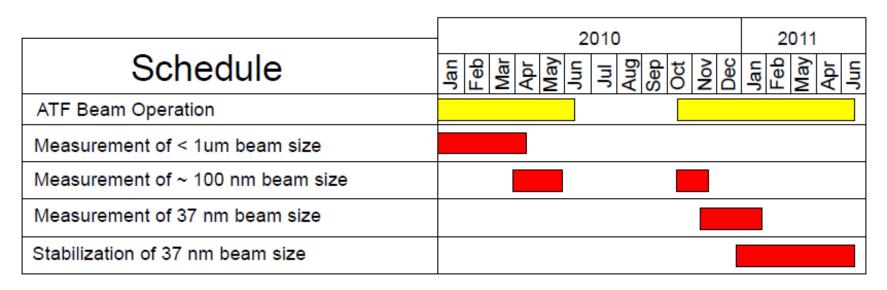
Measurement condition • Crossing angle ~ 2.75 deg = fringe pitch ~11 μm


measured $\sigma_v^* \sim 2.4 \ \mu m$

Systematic Error

- At the IP, another beam size monitor (wire scanner) is installed
 - 10 um diameter tungsten wire
 - resolution limit is 2.5 μm
- Compared the Shintake monitor and the wire scanner measurement results
 - measurement was done by changing the final focusing magnet current
 - Systematic difference was observed between two measurements

Correction of the systematic errors will be explained in next talk

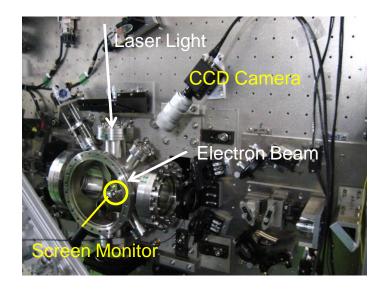


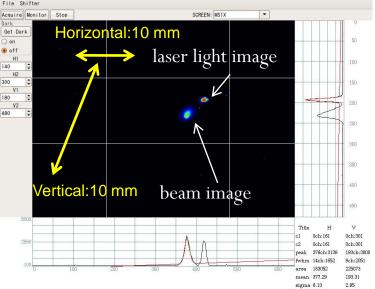
Summary and Near Future Plan

- Succeeded in the measurement of several μm beam size by using the Shintake Monitor in ATF2

Yamanaka@TheUniv.ofTokyo

- Laser optics is ready for all measurement ranges.
- The current beam time will be continued until June
 - Next beam time will be started in October
- Before the summer shutdown, aim to measure ~ 100 nm beam size





Backup

Adjustment of Laser Position

- To adjust the laser beam position to the electron beam initially, screen monitors are used
- Check the laser beams and the electron beam image on the screen
- Adjustment of several 10 um resolution is possible.

Yamanaka@TheUniv.ofTokvo

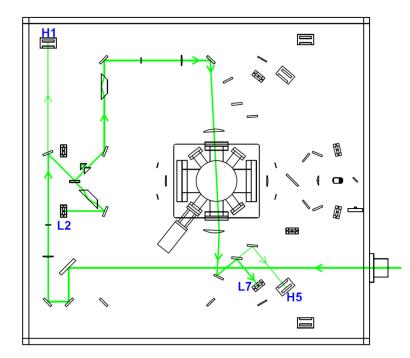
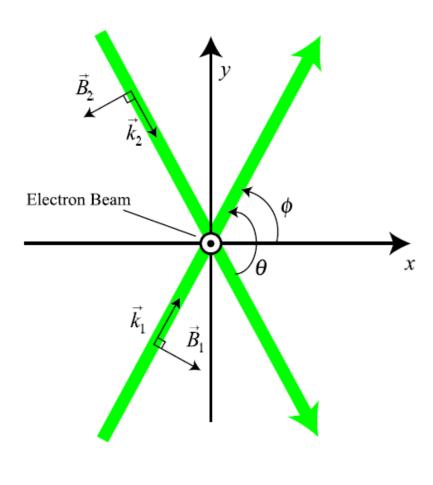

Shintake Monitor

Image of screen monitor

Measurement of Horizontal Beam Size Shintake Monitor

- For the horizontal beam size measurement, 2 types of measurement are possible.
 - Tungsten wire scanner
 - uses 10 um diameter
 - 2.5 um beam size measurement is possible
 - Laser wire
 - Designed laser width at the IP is $\sigma x = 5$ um
- Designed horizontal beam size at the IP of ATF2


$$\sigma_{x}^{*} = 2.8 \,\mu m$$

Yamanaka@TheUniv.ofTokyo

Laser Path for horizontal beam size measurement

Calculation of Beam Size

Change of Compton photon signal

$$N_{\gamma}(y_0) = \frac{N_0}{2} \left\{ 1 + \cos 2k_y y_0 \cos \theta \exp\left[-2(k_y \sigma_y)^2\right] \right\}$$

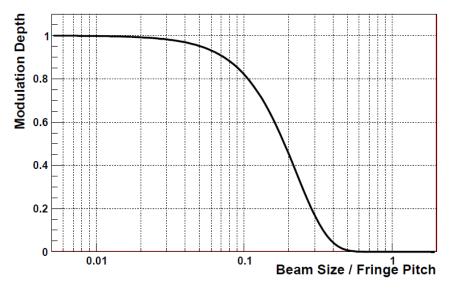
$$M$$

Yamanaka@TheUniv.ofTokyo

Shintake Monitor

 y_0 : position of e- beam $M \equiv \left| \frac{N_+ - N_-}{N_+ + N_-} \right| = \frac{\text{Amplitude}}{\text{Average}}$

Beam Size

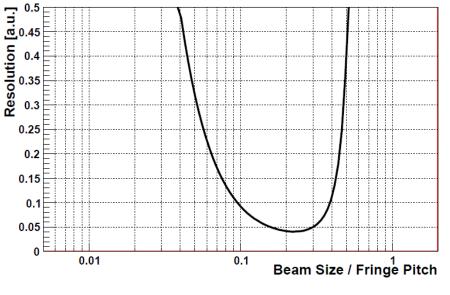

$$\sigma_y = \frac{d}{2\pi} \sqrt{2 \log\left(\frac{|\cos\theta|}{M}\right)}$$

Interference fringe pitch

$$d = \frac{\lambda}{2\sin\phi}$$

Estimation of **Measurement Resolution**

0.5



Relationship between the modulation depth:M and beam size

- Beam size large \rightarrow M \approx 0
- Beam size small \rightarrow M \approx 1
- there exists measurable range according to each fringe pitch

Relationship between the measurement resolution and beam size (assume ΔM =const.)

 The best resolution is obtained at around the 20% of the fringe pitch

Yamanaka@TheUniv.ofTokyo Shintake Monitor

Interaction of Electromagnetic Field and Electron

• Electromagnetic field in electron rest frame (with *)

Yamanaka@TheUniv.ofTokyo
Shintake Monitor

• Electromagnetic field in laboratory frame (wo *)

$$\begin{cases} \mathcal{E}_x^* &= \gamma(\mathcal{E}_x - \beta B_y) \\ \mathcal{E}_y^* &= \gamma(\mathcal{E}_y + \beta B_x) \\ \mathcal{E}_z^* &= \mathcal{E}_z \end{cases}, \\ \begin{cases} B_x^* &= \gamma(B_x + \beta \mathcal{E}_y) \\ B_y^* &= \gamma(B_y - \beta \mathcal{E}_x) \\ B_z^* &= B_z \end{cases}, \end{cases}$$

• γ -factor : 2544 @ 1.3GeV electron

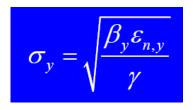
Shintake Monitor for the ILC

- Modulation depth @ 5.7 nm ILC beam
 - 89.6% with 157 nm F2 laser
 - 92.9% with 193 nm Excimer laser
 - 93.9% with 213 nm YAG 5th laser

In current error factors (ATF2), 17% resolution at M=90%

Yamanaka@TheUniv.ofTokvo

- Multi bunch operation
 - Quick accumulation of statistics
 - Improvement of resolution by a factor of 10 at 3940 bunches
 - 1 train measurement slow drift suppressed
 - Need high-repetition laser
 - Fast phase scan by a Pockels cell
- Systematic error is similar, 5% can be achieved


Shintake monitor for the ILC (2)

- Installation at the Interaction Point in the beam commissioning stage
 - Assure 5.7 nm beam focusing
 - Fast tuning without interaction
 - Must be removed when installing the detectors
 By push-pull structure??
- Installation to the second IP for a diagnostic monitor
 - > 25 nm beam size measurements are much more realistic using current scheme.

Yamanaka@TheUniv.ofTokvo

Experiment at ATF2

- Experiment at ATF2 with 37 nm beam size can be the test for ILC 5.7 nm beam size?
- Vertical beam size is given as follows,

Yamanaka@TheUniv.ofTokyo

- β y : β-function (determined by the strength of the focusing magnet)
- $\varepsilon_{n,y}$: normalized vertical emittance (determined by the performance of the damping ring)
- γ : γ –factor of the accelerated beam
- Therefore, if the same b and emittance will be obtained with the ILC beam, 5.7 nm focusing is possible with the ATF2 beam optics

	ATF2	ILC
beam energy	1.3 GeV	250 GeV
γ for electron	2544	4.89×10^{5}
1/γ	3.9×10^{-4}	2.0×10^{-6}