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D. Käfer, J. List

daniela.kaefer@desy.de

LCWS 2010 and ILC 2010
Beijing, China – March 26-30, 2010



Overview Polarimetry at the ILC Prototyp Design & Simulation Testbeam 2009 Conclusions

1 Polarimetry at the ILC
Basics & Overall Concept
Up- and Downstream Chicanes

2 Prototyp Design & Simulation
ILC Layout → Prototype Requirements
Prototype Simulation & Construction

3 Testbeam 2009
Prototype Setup @ ELSA Accelerator
Alignment & First Signals
Comparison of Data & Simulation

4 Conclusions
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Compton Polarimetry Basics

ILC: will use polarised beams → need precise knowledge
⇒ dedicated Compton polarimeters measure beam polarisation

measure the polarisation dependent Compton cross section
∗ circularly polarised laser light hits e− bunches (under a small angle)

∗ scatters typically O(103) e−/bunch

e− energy spectrum depends on laser helicity × beam polarisation
but e− scattering angle ≤ 10 µrad in laboratory system

magnetic chicane transforms energy → spatial distribution
also guides scattered e− to Cherenkov detector: signal ∝ e−/channel

Measure Compton event rate w.r.t. (known) laser helicity
⇒ resulting asymmetry directly prop. to beam polarisation !
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Compton Process Dependencies
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Upstream Chicane (original design)
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total length:  74.6 m

fast: O(103) Compton scatterings/bunch: energie- → position distr.

constant B-field: Compton edge position indep. of Eb (beam energy)
and there are no Eb-dep. distortions of the energy spectrum

laser moves ≈ 10 cm horizontally ↔ same frequency usable for all Eb
(vacuum chamber & laser optics designed accordingly)
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any design changes of the upstream polarimeter chicane have serious
consequences for the obtainable measurement precision

integration of emittance diagnostics a/o MPS collimator not possible

⇒ Polarimetry needs were fully acknowledged by GDE and BDS !
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Downstream Chicane (K. Moffeit, E. Torrence)
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Same principle as upstream polarisation meas., but more difficult
disrupted beam & large SR background → need high-power laser

Access to luminosity weighted polarisation (measure w/o collisions)

⇒ Successfully integrates SR strip detectors to measure Eb !
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Overall Concept

Upstream: “cleanest” measurement, highest time resolution
can measure individual electron bunches → machine feedback!
⇒ correlations, left-right differences, time dependencies

Downstream: measures specifically depolarisation effects
access to luminosity weighted polarisation (measure w/o collisions)

large background: can measure only one bunch/train

Annihilations data: very long-term → average polarisation
. determines absolute calibration scale for polarimeters
. more exact, if corrections from polarimeters are known
. high statistics necessary (several months) & data for all pol. config’s

⇒ Complimentarity, Redundancy, Reduction of syst. errors !
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Daniela Käfer LCWS’10 26-30/03/2010 Prototype Testbeam Measurements 5 / 25



Overview Polarimetry at the ILC Prototyp Design & Simulation Testbeam 2009 Conclusions

Overall Concept

Upstream: “cleanest” measurement, highest time resolution
can measure individual electron bunches → machine feedback!
⇒ correlations, left-right differences, time dependencies

Downstream: measures specifically depolarisation effects
access to luminosity weighted polarisation (measure w/o collisions)

large background: can measure only one bunch/train

Annihilations data: very long-term → average polarisation
. determines absolute calibration scale for polarimeters
. more exact, if corrections from polarimeters are known
. high statistics necessary (several months) & data for all pol. config’s

⇒ Complimentarity, Redundancy, Reduction of syst. errors !

IL
C
-N

O
T

E
-2

0
0
8
-0

4
7
,
ar

X
iv

:0
8
0
8
.1

6
3
8
v1

[p
h
ys

ic
s.
a
cc

-p
h
]
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Polarimeter Locations in the BDS
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e+e− IP !
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Polarimeter Locations in the BDS
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ILC Cherenkov Detector Layout

beam

aluminum tubes

x
y

z

photodetectors
LEDs

Staggered U-shaped channels

(separate gas system)

. front U-leg: calibration (LED, laser)

. hind U-leg: photodetector measuring

the Cherenkov radiation
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ILC Cherenkov Detector Layout
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Prototype Requirements

Linearity: controllable /measurable with permille level precision !
→ need a stable detector response, also on macroscopic time scales

e

PMLED (calibration)

Cherenkov  photons

2

10
 c

m

10 x 10 mm
cross section:

15 cm

Al
−t

ub
es

U-shape protects PDs & calibr. system
. outside of SR-fan & direct electrons

. few reflections → little light loss

Gas- & light-tightness

Homogeneous response to primary flux
of scattered Compton electrons
. peak intensity in blue-ultraviol. range → need good reflectivity at small λ

. smooth & planar inner surfaces → uniform channel illumination

Robustness towards background
gas: high Cherenkov threshold (MeV) → few photons due to low-energy electrons

Calibration system on front U-leg
possibility to control photodetector response (linearity) independent of beam

Thin wall(s) between channels ⇒ go for a Two-channel Prototype!
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Optical Simulation (GEANT4)

Goal: find characteristics like photon-yield per electron, average number
of reflections, asymmetry effects due to geometry a/o material

x
y

z

Two-channel prototype
(T = 20◦C, p = 1 atm)

Cherenkov photons

e− beam

sim. according to Tech. Drawings
L=15 cm, �=8.5×8.5 mm2

gas: C4F10, threshold: 10 MeV

wall reflectivities: λ-dependent!

. diamant-milled: R≈ 85%

. foil (0.3 mm): R≈ 40%

all Cherenkov processes & all
subsequent / secondary processes

multiple scattering, scint., ionisation, as

well as reflection, refraction & absorption

at surface & boundary areas

⇒ Light distribution at photo cathode!
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Cherenkov Spectra & Quantum Efficiency

Density distribution of the Cherenkov radiation from a single electron after
the optical simulation → at the photo cathode surface
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Steep decrease (1/λ2-dep) ⇒ need blue/ultraviol. sensitive PDs
λlo : gas refractive index, λhi : photodet. dynamic range (hard-coded in simualtion)
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Cherenkov Spectra & Quantum Efficiency

Density distribution of the Cherenkov radiation from a single electron after
the optical simulation → at the photo cathode surface
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Light Intensity at Photo Cathode
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Intensity is highest opposite the inter-channel wall with worse reflectivity
Sim. ⇒ on average only one reflection under ’glancing angle’ !

beam profil: 2-dim. Gauss (σx= σy=1.5mm), statistics: 100.000 e−/pt., E(e) = 2 GeV
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Asymmetries in Light Distribution
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Daniela Käfer LCWS’10 26-30/03/2010 Prototype Testbeam Measurements 12 / 25



Overview Polarimetry at the ILC Prototyp Design & Simulation Testbeam 2009 Conclusions

CAD & Technical Drawings (Univ. Hamburg)

Outer dimensions of the inner channel structure:

L×W×H : 178.5× 37× 114.25mm, base Cherenkov length: L=15 cm

CAD illustration of the inner
channel structure located
inside the box base body:

. ground plate,

. inner boundary walls,

. outer side boundary walls,

. and outer base wall.
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CAD & Technical Drawings (Univ. Hamburg)

Technical drawing for the assembly of the prototype box:

box base body inner structure:
2 parallel U-shaped channels
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Construction Process (Univ. Hamburg)

Inner structure: all slabs/bars/tiles are diamond-milled

. ensure good reflectivity (R≈ 85%) of all inner surfaces

. exception: thin inter-channel foil with R≈ 40% (from GoodFellow)

Box base body: cut from a solid aluminum block

. ensure gas- & light-tightness of the entire structure

. allow enough room to easily accomodate the inner structure
(outer box: 230×90×150 mm ↔ inner dim.: 178.5×37×114.25mm)

Assembly:

. assemble the complete inner channel structure

. place inside base box & close the solid aluminum lid

. add photodetector & calibration modules (LED only)
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Some Construction Photos (Univ. Hamburg)

Open prototype box (standing), without LED- or PM-mountings
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Some Construction Photos (Univ. Hamburg)

Open prototype box (lying), with PM-mounting in foreground
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Testbeam 2009
(at ELSA in Bonn)
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ELSA Fill Structure ↔ Readout

ELektronen-Stretcher-Anlage:b a three stage electron accelerator
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energy (injection/extraction) in testbeam mode: 1.2 GeV / 2.0GeV

variable extraction current ≈ 10 pA . . . 220 pA

beam spot: focusable to ≈ 1...2 mm

variable fill structure: maximal 274 bunches in 2 ns intervals

no trigger: gate for readout electronics via “beam clock + pulse generator”
length: detector integrates over all e− bunches of an entire turn (< 548 ns)

extraction: 4.0 s, injection/accel..: 1.1 s → ratio ≈ 4:1
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Prototype Location @ ELSA

Prototype

X
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Prototype Location @ ELSA

Setup in external ELSA beam line:

directly behind a dipole magnet
(dumping the electron beam)

fixated to a translation stage:
movable in x and y

tilted in: αx ≈ 7.5◦...7.8◦

mounted on a base plate
turnable in αy

αz ≈ 0◦ adjusted using
a spirit level
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First Cherenkov Signals

Cherenkov signals correspond to variation of the extraction beam current !

Stable pedestal (pos. & width)
→ constant DC rate
(see also: ≈ 4:1 ratio)

DC rate: dep. on HV, temp. but
not (directly) on beam conditions

but: changes in beam conditions
influence other parameters as
temp. a/o beam background

QDC counts
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100 310×
dark current

different
beam currents

bias HV = 860 V

⇒ No effect seen due to changes in temperature / beam conditions!
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Alignment via Cherenkov Data: αy

Previously: align detector in x/y-direction using coarse scans, then:
several x-scans for different tilt angles: αy = 0, ±1, ±2, +3
Approach might be helpful regarding the alignment of real ILC pol. Cherenkov detectors

N photons ∝ channel length

detector tilt w.r.t. beam axis:
e− traverse channel diagonally,
hit channel walls before having
traversed the entire length
→ less light !

compare x position of each
largest signal for all scans:
αy ≈ (1.33 ± 0.03)◦

⇒ Accuracy improved from ∆αy ≈ 3◦ (before) to > 0.1◦ (after)
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Different Photodetectors

absolute x-values denote the table position w.r.t. the electron beam → meaningless
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Not taken into account: non-perfect beam profile & any remaining misalignment
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Multianode Photodetector (8×8)

z

x
y

4 5
6732

anode readout configuration

for 8×8 MAPM, (bias HV = 500 V)
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x-scan: both det. channels

16 anodes/ch.: high position resol., but not enough readout channels
Distance: ∆x=(8.3± 0.4)mm (8.8mm) arithmetic mean from diff. methods
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Multianode Photodetector (8×8)
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anode readout configuration

for 8×8 MAPM, (bias HV = 500 V)
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y-scan: right channel only

Both scans: highest light intensity opposite the beam entry point !

(Absolute x/y-values denote the table position w.r.t. the electron beam → meaningless!)
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. . . more 8×8 MAPM

Account for: grouping of anodes & their respective distance from channel
walls ⇒ same shapes! (measure distance: beam entry point↔ opposite wall)
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⇒ Data confirm Sim.: on average one ’glancing angle’ reflection !
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Asymmetries: Data & Simulation
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light intensity in left (upper) channel half
minus the one in right (lower) channel half
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Asymmetries: Data & Simulation
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Reduced inter-ch.wall reflectivity ⇒ x-asym. not point-symmetric!

data deviate slightly from simulation results → hints to remaining misalignment,

non-perfect beam profile, different anode sensitivities . . .
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However: data & simulation agree rather well, overall !
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Linearity Measurement (via beam current)

extraction current measurement rather imprecise: errors up to 10. . . 15%

→ no gain for the determination of the detector linearity

Daniela Käfer LCWS’10 26-30/03/2010 Prototype Testbeam Measurements 24 / 25



Overview Polarimetry at the ILC Prototyp Design & Simulation Testbeam 2009 Conclusions

Linearity Measurement (via beam current)

slight machine problems → troubleshooting also improves beam profile

⇒ run simulation with non-perfect (elongated) beam profile !
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Conclusions

Essential @ ILC: precise knowlegde of beam polarisation
→ dedicated Compton polarimeters & Cherenkov detectors

Two-Channel Prototype: construction completed
modular design → allows fast exchange of PDs & calibration source

Optical Simulation: light distribution at photo cathode
→ methode derived to extract intra-channel position information

Successfull Testbeam Operation (@ELSA, Bonn in June’09)

→ first results: data agree well with expectations from simulation!

Further plans:

Compare different photodetectors using the prototype
& establish a permille-level calibration (→ ILC)

Second testbeam period just finished successfully, too!

Thank you for your attention!
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Laser: Conventional Stuff

e  beam

Laser Room on surface (10m x 10m x 3m)
10 m

10
 m Racks

Electronics Clean Room

Laser O
pt

ics
Optics

Gowning
Room

Penetration shaft: clear line of sight

perpendicular to the beam line

Lens Box

Analysis Box: optics bench on
moveable stage for vertical
movement of Compton−IP

horizontal down

parallel (to Compton−IP with crossing angle)

Mirror Box 1 (in laser room):
Mirror Box 2 (bottom of penetration shaft):

Mirror Box 3:

2nd mirror (box 3) on moveable stage
for vertical movement of Compton−IP

dz=+10.0m dz=+5.5m dz=−6.5m dz=−10.0mz=147.182m

Compton−IP

Extraction line tunnel

X

Downstream Polarimeter

penetration shaft and extraction line tunnel
Plan view:  Config. of surface laser room, 

3P 2P

(aperture=0.8m,  depth~100m)

Setup for upstream laser facilities is very similar:

surface buildings, penetration shaft, laser path & moveable mirror box
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Laser: Conventional Stuff

Fixed field operation:

e+/e− beam moves laterally depending on Eb

(dispersion changes)

moveable stage / mirror box:

ensure that the laser hits

the e+/e− bunche for all

available beam energies

Setup for upstream laser facilities is very similar:

surface buildings, penetration shaft, laser path & moveable mirror box
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Laser: Which One Exactly?

Laser choice for the upstream polarimeter:

use same laser as for TTF/Flash injector gun
in routine operation for many years!

operates @ nominal pulse & bunch pattern of TESLA
→ can hit every bunch!

pulse length: ≈ 8 ps (→ most of the laser power is available for collisions)

. after only 20 trains (4 s) → average prec. of 1% for each bunch

. average over two entire trains: dP/P ≈ 0.1 % at 50 W S
.S
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A

4
4
5

(2
0
0
0
)

4
2
7

Laser choice for the downstream polarimeter:

use frequency doubled Nd:YAG laser → slow (only hits one bunch/train)

need to employ 3 lasers to hit 3 bunches/train

pulse length: ≈ 6 ns → after 1 minute:
average of the 3 measured bunches: dP/P ≈ 1 %/min. at 50 W
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Cherenkov-Hodoskop

Messung der Energie-/Ortsverteilung mittels Cherenkov-Detektoren

Compton-Elektronen → Cherenkov-Strahlung → Photo-Elektronen

Cherenkov-Effekt: NCh
γ = εChNCo

e ↔ Länge/Br.index/Reflektivität
Photo-Elektronen: NPh

e = εPMεAttNCh
γ ↔ Photodetektor Typ!

→ Linearität extrem wichtig!
(Größe/Form evt. Nichtlinearitäten genau messen & gegebenenfalls korrigieren.)
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Photodetectors & Mountings (IExpP Univ. Hamburg)

M4: 2×2 pads

18.0×18.0 mm2

λ = 185..600 nm

M64: 8×8 pads

18.1×18.1 mm2

λ = 300..600 nm

R7400U-06

� = 8 mm

λ = 160..600 nm

XP1911/UV

� = 15 mm

λ = 200..600 nm

Daniela Käfer LCWS’10 26-30/03/2010 Prototype Testbeam Measurements 29 / 25



Photodetectors & Mountings (IExpP Univ. Hamburg)

M4: 2×2 pads

18.0×18.0 mm2

λ = 185..600 nm

M64: 8×8 pads

18.1×18.1 mm2

λ = 300..600 nm

R7400U-06

� = 8 mm

λ = 160..600 nm

XP1911/UV

� = 15 mm

λ = 200..600 nm

M4 / M64 mounting
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Recommendations (from 2008 EP-Workshop)

1 Separate the functions of the upstream polarimeter chicane. Do not
include an MPS energy collimator or laser-wire emittance diagnostics;
use instead a separate (dog-leg) setup for these two.

⇒ will be changed for re-baseline!
The polarimeter chicane will remain in its place 1700 m upstream of the e+e−-IP,

while the MPS collimator and emittance diagnostics are moved further upstream.

2 Modify the extraction line polarimeter chicane from a 4-magnet
chicane to a 6-magnet chicane to allow the Compton electrons to be
deflected further from the disrupted beam line.

⇒ will be changed for re-baseline!

3 Include precise polarisation and beam energy measurements for
Z-pole calibration runs into the baseline configuration.

4 Keep the initial positron polarisation of 30-45% for physics.

⇒ also forseen for re-baseline!
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Recommendations cont’d (from 2008 EP-Workshop)

5 Implement parallel spin rotator beamlines with a kicker system before
the damping ring to provide rapid helicity flipping of the positron spin.

⇒ will be changed for re-baseline!

6 Move pre-DR positron spin rotator system from 5 GeV to 400 MeV.
This eliminates expensive superconducting magnets and reduces costs.

7 Move pre-DR electron spin rotator system to the source area.
This eliminates expensive superconducting magnets and reduces costs.

⇒ Both of these very cost effective changes are already
implemented in the re-baseline BDS plans!
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