MDI engineering issues for a CLIC Detector H. Gerwig, CERN

MDI – or when tunnel meets cavern

- Stable and precise support of QD0
- Beampipe sectorisation, Vacuum valves, pumps & access
- Kicker & BPM and its electronics
- Crossing angle and split beam pipe
- Opening of the detector
- Push-pull, moving platform, connection tunnel/cavern
- Alignment issues
- Self-shielding detector, safety
- Experimental cavern, access, services, cranes, safety

Satisfy all the requirements in a way that it just works fine!

Parameter drawings for 2 detectors @ CLIC

CLIC_ILDish Detector

CLIC detector comparison

<u>Requirement:</u> ILC – CLIC stabilisation

ILC = 50 nm
CLIC < 0.5 nm
This is a factor 100 less for CLIC !

You can't do 100 times better just by saying we will chose higher quality material, tighter tolerances, pushing more to limits etc.

You need a new strategy!

Facts: Vibration measurements at CMS

1. Limit vibration by construction !

- Abandon opening on IP thus making the QD0 support short (L^3)
- Use a two-in-one support tube scheme (idea of H. Yamaoka)
- Tune tube's eigenfrequency (train repetition rate 50Hz)
- Avoid cooling liquids (permanent magnet)
- Keep also the end-caps compact in Z (with endcoils)
- <u>Reduce to the max</u> the gap between detector & tunnel (no pacman)
- Support QD0 from a passive low frequency pre-isolator in the tunnel

About the pre-isolator

We are proposing a pre-isolator system with

Low natural frequency (around 1 Hz) and Large mass (50 to 200 ton)

This system will act as a low-pass filter for ground motion that is able to withstand external disturbances (air flow, acoustic pressure, etc.)

So, is this concept being used anywhere?

Yes

This approach is being, for example, widely used as a first "layer" of vibration isolation in nanotechnology labs

FEM Simulations of gain

2. Limit vibration by active intervention

- Active stabilisation with piezo actuators
 - BPM beam kicker feedback loop

We rely on three independent stabilization techniques: 1. pre-isolator 2.Piezo-actuators 3.Beam kicker

Situation inside support tube

Cross-section support tube, dimensions

QD0 layout, courtesy M. Modena

Vacuum schema & implementation (draft)

Detector & Experimental Area

- During its transfer from IP to garage position, the QD0 support is hold inside the endcap by hydraulically or pneumatically motorized supports
- An extraction tool allows the endcap to open with QD0 support staying in place thus giving access to the valves and Lumical

• After opening of Lumical and valve, Support tube can be taken away by crane

Step 1: Detector from IP -> Garage position

Step 2: Installation of Extraction tool, opening, support tube does <u>NOT</u> move

Extraction tool for Support tube

8th MDI meeting H.Gerwig

4 Dec. 2009

8th MDI meeting H.Gerwig

Experimental Area proposal

Experimental area has been designed with **2 working caverns** and **1 transfer tunnel**

Its characteristics are:

- no pacman shielding instead chicanes between endcap/tunnel
- Very smooth end-wall of tunnel
- Longer experiment <u>adapts</u> via end-coils <u>to shorter</u> experiment
- Radiation shielding1 is a ring chicane on the endcap
- Radiation shielding2 is a sliding concrete wall integrated into cavern
- Provision of 2 x 75 m³ volumes in the tunnel to house a possible massive pre-isolator of up to 200 tons each

<u>A word to Push-Pull</u>

- Work experience in CMS and elsewhere showed that the mechanical movement is very short with respect to all the hidden tasks and other losses.
- To perform well in a push-pull scenario, one has carefully to study in terms of speed for:
 - powering the magnet, cooling, vacuum pumping and radiation shielding for safety in order not to loose the time there!

The real move and precision positioning of the detector within 1 mm is feasible in 1 day

A cavern only is empty directly after CE

EA looking inside

Experiment 2 sliding on IP, shielding walls closed

End-coils and isolator basic layout

Cut view of transfer tunnel

Radiation chicane retracted

Radiation chicane switched on

Top view of a CLIC EA layout

Main dimensions proposal CLIC EA

Thank you for your attention

