SiD Tracking Performance at 3 TeV in Presence of Beam Background

LCWS Beijing March 29, 2010

Christian Grefe CERN, Bonn University

- Introduction
 - Detector concept for CLIC
 - Beam induced background
- Overlaying background
- Tracking efficiency
- Momentum resolution
- Performance of tracking algorithm

- Precision instrument for e⁺e⁻ collisions
- Optimized concept for 3 TeV
- Detector will be operated at 500 GeV in a first stage
- \rightarrow Start from existing ILC detector concepts and modify where necessary
- Main differences from the detectors point of view:
 - Higher Energy (more jet energy, higher density within jets, ...)
 - Higher beam induced background (high occupancy esp. in vertex)
 - Less time between bunches (time stamping / time slicing)
 - Less time between trains (power pulsing?)

- Vertex and forward tracker:
 - 5 barrel layers and 7 disks of 20 x 20 µm² Si-pixels
 - Modified layout to avoid pair background
- Main Tracker:
 - 5 barrel layers and 4 disks of 9 cm x 25 µm Si-strip

Christian Grefe – March 29, 2010

Page 4

- Beamstrahlung:
 - Oppositely charges bunches attract each other and create γ ($\Delta E/E = 29\%$ @ 3 TeV)
- Coherent pairs (3.8×10⁸ / BX)
 - Very low angles, mostly disappear in the beampipe
- Incoherent pairs (3.0×10⁵ / BX)
 - Higher angles, need to be suppressed by solenoid field, problematic for VTX
- $\gamma\gamma \rightarrow$ hadrons (~3 / BX)
 - "mini jets" spoiling the physics
- Beamspectrum:
 - Only 1/3 of luminosity in top 1% of energy

 \rightarrow For now: only $\gamma\gamma \rightarrow$ hadrons in sim & reco

e⁺e⁻ Pairs

Christian Grefe – March 29, 2010

- Implemented Icsim driver
 - Define input LCIO files (no limit)
 - Each LCIO can contribute different number of its events to the overlayed event
 - Set which collections to merge (i.e. no need to merge calo hits for tracking studies)
 - Feedback appreciated: lcsim-contrib/Grefe/overlayEvents
- Procedure
 - Simulate signal and background (1 BX per event) separately
 - Merge desired amount of BX with signal LCIO
 - Run reconstruction

- Track finding begins by forming all possible 3 hit track seeds in the three "Seed Layers"
 - Brute force approach to finding all possible track seeds
- Require the presence of a hit in a "Confirmation Layer"
 - Significantly reduces the number of candidate tracks to be investigated
- Add hits to the track candidate using hits on the "Extension Layers"
 - Discard track candidates with fewer than 7 hits (6 hits for barrel only tracks)
 - If two track candidates share more than one hit, best candidate is selected
- Upon each attempt to add a hit to a track candidate, a helix fit is performed and a global χ^2 is used to determine if the new track candidate is viable

Seed

Richard Partridge

- Strategy requirements from SiD
 - At least 7 hits on the track
 - Only 1 hit per layer
 - Special barrel only strategy with 6 hits used to pick up low-p_t particles in the central region
 - p_T > 0.2 GeV
 - r ϕ and s z impact parameter cuts $|d_0| < 1$ cm and $|z_0| < 1$ cm
 - $\chi^2 < 50 \ (\chi^2 < 25 \text{ for } 6\text{-hit barrel only strategy})$
 - A "findable track" fulfills these cuts
 - Define tracking efficiency as nReconstructed / nFindable
 - Only consider final state MCPs from the signal event for calculating efficiency

- Cut-off by algorithm for $p_t < 0.2 \text{ GeV}$
- Lose some tracks for $p_t < 1$ GeV and $p_t > 100$ GeV

 No difference when adding background (except for dips at 0.7 GeV and 1.0 GeV → needs to be understood)

- Dips in efficiency at barrel-endcap-transitions for VTX and main tracker
- Only low p_t tracks affected

• Again no difference when adding background

- Define MC particle contributing majority of hits to reco track as true MCP
- More background leads to more confusion
 - 3% of reco tracks have 5 falsely assigned hits with 15 BX overlayed

Christian Grefe – March 29, 2010

- Design goal for CLIC (and ILC): ∆p/p² ≈ 2*10⁻⁵ GeV⁻¹
 - Driven by physics requirements, i.e. $e^+e^- \rightarrow \nu\nu H^0 \rightarrow \nu\nu\mu^+\mu^-$
- Fulfilled for angles > 20°
- Loss of resolution for high p (should be flat)

Only marginal changes in resolution when adding background

Christian Grefe – March 29, 2010

Computing performance does not scale when adding background

- Modifed geometry of SiD02 \rightarrow CLIC01_SiD
- Implemented flexible driver for overlaying LCIO files
- Simulation and reconstruction for $z \rightarrow qq$ (uds) @ 3 TeV, including up to 15 BX of $\gamma\gamma \rightarrow$ hadrons background:
 - Tracking efficiency: OK
 - Momentum resolution: OK
 - Computing performance: does not scale
- Future Plans:
 - Overlay pair background as well
 - Add more BX, see if efficiency breaks down

Need to understand high p behavior