

Update on Global Cavity Database and Yield Evaluation

ILC Cavity Database Group:

- S. Aderhold (DESY)
- Z. Conway (Cornell)
- R. Geng (JLab, SO Group Leader)
- C.M. Ginsburg (FNAL)
- Y. Yamamoto (KEK)

DESY Database Group:

- D. Gall (DESY)
- V. Gubarev (DESY)
- S. Yasar (DESY)

Presented by Kirk Yamamoto

iii Global Cavity Database Motivation and Goals

- Common data sample, well defined data cuts
 - Everyone uses the same data to make plots a common denominator in yield calculations
 - Data cuts can be easily specified, and anyone could reproduce your results
- Data entry rules for reliable and reproducible results
 - All RF tests from the last couple of years are included; may be flagged for exclusion
 - Uniform criteria for data entry: only allowed values for as many as possible items
 - Define everything which might vary or have underlying subtleties, e.g., "LABX#1" might be a final surface treatment referenced as a welldefined recipe anyone can look up
 - No private/sensitive vendor data
 - Anything referred to in a comment field must be for information only, and not data selection purposes
 - Minimize effort required for compliance
 - Provide regular updates at predetermined times

ILC Database tool now fully functional

- ILC Database tool was created by the DESY database group
 - DESY kindly agreed to provide limited support for inclusion of global data into their database
- All the participating labs have put their data into the ILC Database
- ILC Database is now fully functional
 - http://tesla-new.desy.de/cavity_database/

ILC Database Screenshot

For those who have used the DESY database, this will look and feel very familiar

ILC Database: Selected Features (1)

Order and select cavities by features

Extract data in ASCII format and use your private spreadsheet

Make the standard first-pass yield plot defined by ILC DB group, or make a plot using your own selection

ILC Database: Selected Features (2)

Click on an item to bring up a dialog box explaining definition

ILC Database Status/Plans

- All baseline requirements have been implemented by the DESY DB group
- A few fine-tuning items are still under discussion, to be implemented as time is available, e.g.,
 - How best to incorporate inevitable changes to the logic for standard plots
 - Implement more standard plots, etc.
- All cavity yield plots in the rest of this talk use data extracted from the ILC Database

LCWS2010 Cavity Yield Dataset

- ILC Database currently contains data from all three regions, from the last few years [92 cavities]
 - KEK [5 cavities]: [MHI005:MHI009]
 - JLab, Cornell, Fermilab [22 cavities]: [A5: A9], [TB9ACC010:TB9ACC017], [AES001:AES004], [TB9AES005:TB9AES010], JLAB-2
 - DESY [65 cavities]: [Z82:Z110], [AC112:AC129], [Z130:Z135,Z137:Z145], [AC147,AC149,AC150] (Production 4,5,6,7)

"Qualified-Vendor" Production Yield Plot (First Pass) - Definition

- ILC Database 26.Mar.2010
- Cuts
 - Cavity from qualified vendor= ACCEL or ZANON or (AES SN>=5)
 - Fine-grain cavity
 - Use the first successful (= no system problem/limitation) test
 - Standard EP processing: no BCP, no experimental processes
 - Defined as JLab#1, DESY#2 (weld tank before test), DESY #4 (weld tank after test)
 - Ethanol rinse and 120C bake required for DESY cavities
 - (Ignore test limitation)
- Also known as "first-pass"
- Include binomial errors

Electropolished 9-cell cavities

First-pass cavity yield at >25 MV/m is (66 +- 8) % >35 MV/m is (28 +- 8) %

Up-to-second-pass" Production Yield Plot (qual. vendor) - Definition

- ILC Database 26.Mar.2010
- Cuts
 - Cavity from qualified vendor: ACCEL or ZANON or (AES SN>=5)
 - Fine-grain cavity
 - Use the first successful (= no system problem) test
 - Standard EP processing: no BCP, no experimental processes
 - Defined as JLab#1, DESY#2 (weld tank before test), DESY #4 (weld tank after test)
 - (Ignore test limitation)
 - Second pass
 - if (Eacc(1st successful test)<35 MV/m) then
 - $-\hspace{0.1in}$ if (2nd successful test exists) then
 - » plot 2nd test gradient
 - else
 - » plot nothing [assume 2nd test didn't happen yet]
 - endif
 - else
 - plot 1st successful test gradient
 - endif
- Include binomial errors

"Qualified vendor" Up-to-Second Pass Yield

Electropolished 9-cell cavities

■JLab/DESY (combined) up-to-second successful test of cavities from qualified vendors - ACCEL+ZANON+AES (27 cavities)

Up-to-second-pass cavity yield at >25 MV/m is (70 +- 9) % >35 MV/m is (48 +- 10) %

Compare 1st and 2nd pass yields

Electropolished 9-cell cavities

Electropolished 9-cell cavities

cavity

Compare 1st and 2nd pass yields (updated!)

1st pass

2nd pass

Yield as a Function of Time (one way of looking at it...)

	yield for [%]			
	>25 MV/m		>35 MV/m	
	1st pass	2nd pass	1st pass	2nd pass
ALCPG-Albuquerque 1.Oct.2009	63+-10	67+-10	23+-9	33+-10
AAP-Oxford 6.Jan.2010	63+-9	64+-10	27+-8	44+-10
LCWS-Beijing 28.Mar.2010	66+-8	70+-9	28+-8	48+-10

NB: errors are very strongly correlated

Within the very limited additional statistics accumulated over the last six months there appears to be improvement in the yield

Summary

- ILC Database now fully functional and available for use
- Updated yield plots were shown
 - First-pass cavity yield at >25 MV/m is (66 +- 8) %
 - >35 MV/m is (28 +- 8) %
 - Up-to-second-pass cavity yield at >25 MV/m is (70 +- 9) %
 - >35 MV/m is (48 +- 10) %

 We will continue to update the ILC database as we have more cavity tests, and systematically update the cavity yield data