

Cavity Gradient R&D Status and Future Plans for TDP-2

Rongli Geng Jefferson Lab

3/28/10 Rongli Geng

ILC10, Beijing, China

1

Outline

- Brief history since 1st ILC workshop in 2004
 - BCD & ACD proposal, RDR, SB2009
 - Gradient scatter & S0
 - Efforts of FE reduction and results
 - Flat top operation with spread of gradients ACD HLRF impact
- R&D status

IIL

- Success of US industry built cavities
- Understanding of gradient limit due to quench
- Yield definition & global data base
- TDP-2 strategy and plan
 - Major issue: yield drop at ~ 20 MV/m due to quench
 - Path forward and high priority R&D issues
 - Resources
- Gradient choice considerations
 - Snowmass assumptions revisited
 - ACD issues

Brief history since 1st ILC workshop at KEK in 2004

Gradient a Major Cost Driver for ILC

Cost vs Gradient

3/28/10 Rongli Geng

ILC Gradient Goals

500 GeV: Gradient and Q

Based on BCD cavity shape (TESLA cavity)

- BCD: Linac operating performance Eacc = 31,5 MV/m; Q = 1x10¹⁰
- BCD: Installed performance Eacc ≥ 35 MV/m; Q ≥ 0.8x10¹⁰
 - Required R&D
 - Reduction of field emission and multipacting
 - Reduction of scatter of cavity performance

H.Edwards, D.Proch, K.Saito, ILC snowmass 05, Wg5

2005 Snowmass BCD proposal

4.1.2 Issues of Main Linac System Design

In conjunction with the (GDE and AAP) review process in 2010, based on the current R&D results we propose to keep the cavity gradient goals at 35MV/m in vertical test,S0, and 31.5MV/m in operation in an installed cryomodule, S1. We note that as the R&D progresses, including horizontal testing of

Parameter	Value			
Type of accelerating structure	Standing Wave			
Accelerating Mode	$TM_{010}, \pi mode$			
Fundamental Frequency	1.300 GHz			
Average installed gradient	$31.5 \mathrm{MV/m}$			
Qualification gradient	$35.0 \mathrm{MV/m}$			
Installed quality factor	$\geq \! 1 \! imes \! 10^{10}$			
Quality factor during qualification	$\geq \! 0.8 { imes} 10^{10}$			
Active length	1.038 m			
Number of cells	9			
Cell to cell coupling	1.87%			
Iris diameter	$70 \mathrm{mm}$			
R/Q	$1036 \ \Omega$			
Geometry factor	$270 \ \Omega$			
$\rm E_{peak}/E_{acc}$	2.0			
$\rm B_{peak}/E_{acc}$	$4.26 \text{ mT MV}^{-1}\text{m}^{-1}$			
Tuning range	$\pm 300~{ m kHz}$			
$\Delta f / \Delta L$	$315 \ \mathrm{kHz/mm}$			
Number of HOM couplers	2			

2007 RDR

2006: S0 for ILC Cavity Gradient

3/28/10 Rongli Geng

Major Issue in 2006

Agreed High Priority R&D Issues

- Field emission control is the major R&D issue
 - Field emission is the major source for a large performance spread of cavities
- Quality control issues for surface preparation needs a major effort
 - E.g. acid quality control
 - Surface quality after several preparation steps needs to be controlled
 - Roughness control before final EP
 - Rinsing procedures need quality control
 - E.g. online-monitoring of particles in water from water draining out of the cavity
 - Reduction of cross-contamination due to integration of quality control steps (e.g. frequency tuning) inside the cleanroom
- Mass production issues for many steps need work
- Basic R&D needed for understanding 'recipes' that wc etc.

Lutz Lilje

IIL

CO American Lines Collobal

Progress since 2006

- FE limit much reduced (Post-EP rinsing, assembly, optimal EP)
- Scatter remains due to quench (more later)

3/28/10 Rongli Geng

Introduction of Diagnostics in 2008

Strategy to Improve Performance

ILC10, Beijing, China

ΪĹ

SB2009 ACD HLRF Flattop Operation with a Spread of Cavity Gradients reported by C. Adolphsen

3/28/10 Rongli Geng

Global Design Effort

Cavity Gradient R&D Status

TDP Cavity Gradient R&D Goal and Milestone

ILC Research and Development Plan for the Technical Design Phase

Release 4

July 2009

ILC Global Design Effort

Director: Barry Barish

Prepared by the Technical Design Phase Project Management

Project Managers:

Marc Ross Nick Walker Akira Yamamoto

Table 3-1: Milestones for the SCRF R&D Program.

High-gradient cavity performance at 35 MV/m according to the specified	
chemical process with a process yield of 50% in TDP1, and with a	2010
production yield of 90% in TDP2 (S0, see section 3.1.3 for definition of	2012
process yield)	

3/28/10 Rongli Geng

Global Gradient R&D Highlights

- Americas
 - 4 out of 6 9-cell cavities of AES second production exceed ILC spec.
 - FNAL/ANL joint facility 33 MV/m 9-cell EP processing and testing.
 - Improved understanding by T-mapping and optical inspection of 9-cell cavities.
 - Cornell OST's distributed to other labs.
- Asia
 - STF facility 38 MV/m 9-cell (MHI#8 after local grinding) EP processing and testing.
 - Improved understanding by T-mapping and optical inspection of 9-cell cavities.
 - Successful multi-wire slicing of ingot niobium.
- Europe
 - Improved understanding by T-mapping and optical inspection of 9-cell cavities.
 - Second sound detector commissioning.
 - XFEL cavity call for tenders.
- GDE SCRF Cavity Technical Area
 - Yield definition (1st-pass & 2nd-pass) proposed at AD&I meeting in May 28-29 2009.
- Formed global cavity-database-team in summer of 2009.
 J28/10 Rongli Geng ILC10, Beijing, China

I Results of AES Cavities EP and VT at JLab İIL

3/28/10 Rongli Geng

Gradient limited by one defect in one cell

- - Other superior cells often reaching 30-40 MV/m already
 - Quench location often near equator weld
 - Some in the weld (due to obvious EBW error)
 - Some within 20 mm distance from seam (not so clear how they come about)
 - Many features observed on as-built surface but they are not harmful
- Often times geometrical features observed at quench location for ~ 20 MV/m limit
 - Sub-mm sized pit or bump
 - Repeated EP has little effect
 - Examples found in cavities from all vendors
 - Local grinding removes defect for raised gradient
 - MHI8 for example (more later)

Sometimes no observable (~10µm scale) irregularity

In this case, it is possible to raise gradient to > 35 MV/m by re-EP

Examples with Observable Defect

Deep pit at boundary of under-bead of equator EBW

Twin defects 300-500µm dia. 8mm from equator EBW seam

Potential Max. Gradient for MHI#8 @9/Jul/2009

Max. Gradient Reached in Each Cell (Pi-mode Equivalent) AES6 1st-Pass Processing and Testing, 30apr09

More Examples

- No geometrical defects (down to $\sim 10 \mu m$) observed at quench location
- Re-EP effectively raises cavity gradient
 - MHI8: 18 MV/m >>> 38 MV/m
 - A16: 31 MV/m >>> 39 MV/m

ILC10, Beijing, China

Max. Gradient in Each Cell (Pi-mode Equivalent) A16 1st-Pass Processing and Testing, 14dec09 Defect Treatment Methods being Explored

- Local treatment
 - Local grinding
 - Successful 9-cell demonstration at KEK
 - MHI8 (more later)
 - AES3: 20 MV/m >>> 30+ MV/m

- Local re-melting

- using electron beam
 - Successful 1-cell demonstration at JLab
- using laser
 - Successful 1-cell demonstration at FNAL
- Global treatment
 - Tumbling
 - Successful 9-cell demonstration at Cornell

3/28/10 Rongli Geng

MHI8 Local Grinding at KEK

cell #2, 172° (triangle pit)

Local grinding was performed to remove it!

cell #2, 86° (ellipse bump)

After 2nd V.T. 195 um removed MHI-08, 2-cell equator, Outside weld area 40mm away from joint point at equator T= 086deg. Upstream 2 mm x 2 mm K. Yamamoto, this workshop

Local Grinding Removes Responsible Defect

3/28/10 Rongli Geng

Yield Definition – 1st-Pass

First-pass processing following "ILC recipe"

- If cavity qualified (35 MV/m @ Q0≥8E9) by first-pass, stop further proc.
 - Different from "tight-loop" (earlier S0 approach)
 - Qualified cavity move on for S1
- Failed proc./test due to known facility error excluded
- If cavity not qualified by firstpass then 2nd-pass

ILC Processing & Testing Recipe (major steps)

- Heavy EP
- Vacuum furnace heat treatment
- Light EP
- Post-EP cleaning
- HPR and clean room assembly
- In-situ bake 120Cx48hr
- Cool down to 2K
- RF test
- (Further test with T-mapping)
- (Optical inspection for defect)

Yield Definition – 2nd - Pass

- First-pass test result drives second-pass processing (including treatment other than just EP)
- If cavity qualified by secondpass, stop further proc.
 - Qualified cavity move on for S1
- Failed proc./test due to known facility error excluded
- If cavity still not qualified by 2nd-pass then further decision

Possible second-pass treatments:

- For FE limited cavity in 1st-pass
 - Re-HPR
 - Re-EP + 120cx48hr
- For quench limited cavities in 1stpass
 - Re-EP +120cx48hr
 - Local grinding + re-EP
 +120cx48hr
 - Tumbling + re-HT + re-EP + 120Cx48hr
 - Local e-beam re-melting (+ re-EP +120Cx48hr)
 - Local laser re-melting (+ re-EP +120Cx48hr)

Yield Definition – 2nd - Pass Yield # of cavities passing final gradient of Eacc up to 2nd-pass proc. 2nd-pass yield at Eacc N2,1(Eacc) SPY(Eacc) = N tot – N no_spp # of cavities counted for yield # of cavities requiring 2nd –pass proc. but 2nd-pass processing not done yet

3/28/10 Rongli Geng

Data Cut for Yield Analysis

- No ACD cavities
 - LL/RE

- Large-grain
- No BCP processing
 - For damage layer
 - Or for final chemistry
- Only cavities manufactured by experienced vendors
 - ACCEL/RI
 - ZANON
 - AES
 - (MHI)
- Despite these cut, still known large variability in fab and proc

7/31/09 R.L. Gena

- Large number of cavities required to reduce statistical error
- Some variability may be facility specific

Global Data Collection

14th Cavity Group Meeting

Global Gradient Yield Plots:1st Pass ΪĹ

Electropolished 9-cell cavities

□ JLab/DESY first successful test of cavities from qualified vendors - ACCEL+ZANON+AES (32 cavities)

3/28/10 Rongli Geng

Global Gradient Yield Plots: 2nd -Pass

Electropolished 9-cell cavities

JLab/DESY (combined) up-to-second successful test of cavities from qualified vendors - ACCEL+ZANON+AES (27 cavities)

TDP-2 Strategy and Plan

Major Challenge in TDP-2

- Yield drop at 15-20 MV/m is a major issue
 - Shared issue with XFEL and CEBAF upgrade cavities
- Solution requires actions in cavity fabrication
 - EBW QA/QC

- Finished weld inspection
- Early correction
- Feedback enables change and then progress expected
 - Experienced vendors
 - New vendors

	Standard Fabrication/Process	(Optional action)	Acceptance Test/Inspection
Fabrication	Nb-sheet purchasing		Chemical component analysis
	Component (Shape) Fabrication		Optical inspect., Eddy current
	Cavity assembly with EBW	(tumbling	Optical inspection
Process	EP-1 (Bulk: ~150um)	,	
	Ultrasonic degreasing (detergent) or ethanol rinse		
*	High-pressure pure-water rinsing		Optical inspection
	Hydrogen degassing at 600 C (?)	750 C	
	Field flatness tuning		
	EP-2 (~20um)		
	Ultrasonic degreasing or ethanol	(Flash/Fresh EP) (~5um))	
	High-pressure pure-water rinsing		
	General assembly		
	Baking at 120 C		
Cold Test (vertical test)	Performance Test with temperature and mode measurement	Temp. mapping	If cavity not meet specification Optical inspection

Path Forward

- Successful cavity result involves three aspects
 - Material production
 - Cavity fabrication

- Cavity processing
- Yield improvement requires QA/QC in all aspects
- Address them systematically for end results
 - Two examples
 - Heat treatment recovers/improves bulk material properties
 - This increases defect tolerance
 - Standard heat treatment: DESY 800x2hr, JLab 600°Cx10hr , KEK 750°Cx3hr
 - Recent heat treatment change (600°Cx10hr to 800°Cx2hr) at JLab
 - Post-fab treatment removes fabrication flaws
 - EP removes burs and galling
 - Tumbling removes pits/bumps

High Priority R&D Issues for TDP-2

- Fabrication QA/QC
- EBW optimization
- Local repair method development
- ACD damage layer removal
 - Barrel polishing
 - Tumbling
 - BCP ?
- In parallel, continue final EP QA/QC for improved proc. stability and reproducibility
- Further suppress field emission up to 40 MV/m

Prospect of New Cavities in TDP-2

Progress and Prospect of Cavity Gradient Yield Statistics

	PAC-09 Last/Best May 2009	FALC 1 st Pass Jul 2009	ALCPG 2nd Pass Oct 2009	Current Dec 2009	Coming Prod/Test Jun 2010	Research cavities	Coming Prod/Test till 2012
DESY	9 (AC) 16 (ZA)	8 (AC) 7 (ZA)	14 (AC/ZA)	10 <mark>-6</mark> (Prod-4)	5	8 (large grain)	24+800-x ?
JLAB FNAL/ANL/ Cornell	8 (AC) 4 (AE) 1 (KE-LL5) 1 (JL-2)	7 (AC)	7 (AC)	5 (AE) 1 (AC)	12 (RI) 6 (AE) 2 (AC)	6 (NW) (including large-G)	40+y ?
KEK/IHEP /PKU			(4 -4:MH)	5 <mark>-5</mark> (MH)	2 (MH)	~5 (LL) 1 (IHEP) 2 (PKU)	15+z?
Sum	39	22	21	21 -11	27	~ 22	
G-Sum				42-11 = 31	69-11=58		

Statistics for Production Yield in Progress to reach ~ 60 , within TDP-1. We may need to have separate statistics for 'production' and for 'research',

7 January 2010 SCRF AAP Review

Global Design Effort

25

- On-going globally coordinated S0 effort
 ANL, Cornell, DESY, FNAL, JLab, KEK
- XFEL cavity production (800 cavities)
- EU ILC-HiGrade
- FNAL new cavity orders and US new vendor development
- CEBAF 12-GeV cavity production (80 cavities)
- KEK new cavity orders from Japanese industry including new vendor development
- New vendor development in Canada, China and India

Gradient Choice Considerations

Snowmass Assumptions Revisited

ILC10, Beijing, China

36

"practical limit" update

Gradient Scatter (up to 2nd-pass 40-41 MV/m

2009 EP

2004 DESY EP 9-cell cavities Gradient distribution in cells from pass-band measurements (~ 8 cavities)

Lutz Lilje DESY -MPY-

3/28/10 Rongli Geng

ĨĪĿ

37

2004/11/14

ACD Issues

Further progress in yield improvement and FE reduction requires accelerated R&D in ACD topics

BCD Proposal

- Hottest topics
 - Damage layer Removal
 - BCD: Electropolishing (EP)
 - ACD 1: Mechanical Grinding + small etch of EP
 - ACD 2: Etch
 - Furnace treatment
 - BCD: 800°C
 - ACD: 1400°C
 - Final surface preparation
 - BCD: EP
 - Final cleaning
 - BCD: High Pressure Rinsing with ultra-pure water
 - ACD 1: Dry-ice cleaning
 - ACD 2: Megasonic rinsing
 - Bakeout
 - BCD: 'In-situ' bakeout 120
 - ACD: Air bakeout as part of the drying process

Cavity Performance

- Theoretical RF magnetic limit:
- 🔰 Tesla shape: 41 MV/m
- LL.RE shape: 47 MV/m
- Present practical limit in multi-cell cavities -10%
 - TESLA shape. 37 MV/m
 - LL, RE shape: 42.3 MV/m
- Lower end of present fabrication scatter ($\sigma = 5\%$)
 - TESLA shape: 35 MV/m
 - LL, RE shape: 40 MV/m
- Operations margin -10 %
 - TESLA shape: 31.5 MV/m
 - LL, RE shape: 36 MV/m

An Optimistic Expectation ΪĹ at end of TDP-2 100 RG21mar10 90 ILC 80 70 CEBAF **XFEL** BCD upgrade 60 shape Yield [%] First-pass yield [%] 50 Second-pass yield [% ACD ILC TDP1 goal 40 ILC TDP2 goal shape 30 12 ILC 9-cell cavities 20 6 built by ACCEL: A11, A12, A13, A14, A15, A16 6 built by AES: ASE5, AES6, AES7, AES8, AES9, AES10 10 0 15 20 25 30 35 40 45 Eacc [MV/m]

3/28/10 Rongli Geng

Conclusion

- Gradient R&D history (focus on 9-cell and yield) since 1st ILC workshop briefly reviewed
- Successful FE reduction due to past S0 effort presented
- Global competence in high gradient EP processing in place
- US vendor qualified for cavity production meeting ILC spec
- Yield definition clarified and global cavity database in place
- Quench detection (T-mapping/Cornell OST) and optical insp. in routine use and quench limit understanding improved
- Major issue for future gradient R&D identified
- High priority R&D issues for TDP-2 presented
- Some ACD topics identified for more aggressive push
- And finally, Continued gradient progress expected in TDP-2

Many thanks to colleagues from Cornell, DESY, FNAL, KEK, JLab for contribution

Especially Detlef Reschke for critical comments and Camille Ginsburg and the global database team for input

3/28/10 Rongli Geng

• •

ILC10, Beijing, China

42

IP 2004 State-of the-art EP 9-Cell Cavities at DESY IIL Foundation of RDR Gradient Choice

2004/11/14

CERN COURIER

Jan 27, 2004

Superconducting cavities exceed 35 MV/m

Figure 1

electrolytic polishing, four superconducting nine-cell niobium cavities reached

Development work for the TESLA linear

progress. After a surface treatment called

collider has recently made substantial

accelerating gradients of more than 35 MV/m. This is the performance required for an upgrade of TESLA to 800 GeV (CERN Courier November 2003 p22).

Fig. 1. Excitation curves of the four best nine-cell cavities after electropolishing at Nomura Plating, Japan. The quality factor Q_0 is shown as a function of the accelerating field. The tests were performed at 2 K.

Lutz Lilje DESY -MPY-

Latest Results from DESY

3/28/10 Rongli Geng

İİĻ

Demonstrated Q up to 40 MV/m

İİL

Improved Q pushes up Optimal Gradient

Q vs Gradient

3/28/10 Rongli Geng

ILC10, Beijing, China

47

Pre-2004 Prospect of 40 MV/m İİĹ from KEK 1-Cell Cavity Results

3/28/10

2007-2009 Prospect of 48 MV/m KEK and Cornell 1-Cell Cavity Results

Multi-cell slicing of ingot material

Cost saving potential - also opportunity for material exploration as compared to rolled/annealed sheets

K. Saito, SRF2009

Gradient yield – up to 2nd pass

Electropolished 9-cell Cavities

Presented by C. Ginsburg at LCWS09

3/28/10 Rongli Geng

3/28/10 Rongli Geng

 $\frac{r \cdot H_{crit,RF}}{\beta_{MAG} \cdot (H_{pk}/E_{acc})}$ $E_{acc}^{max} = d$

Gradient Limit Equation

- *H*_{crit,RF}: the intrinsic RF critical field material
- *r*: a dimensionless factor representing the depression effect on the *local critical field* within the **penetration depth**, due to impurity or lattice imperfection ($r \le 1$) metallurgical and surface chemistry
- β_{MAG} : a dimensionless factor representing the magnetic field enhancement effect due to local geometry ($\beta_{MAG} \ge 1$) fabrication and processing
- H_{pk}/E_{acc} : the peak surface magnetic field to accelerating gradient ratio, determined by cavity shape reason for new shapes such as Re-entrant and low-loss shapes
- d: a dimensionless factor representing the thermal stabilization effect bulk material

Strategy for raising limiting gradient

- Raise r
 - Optimize surface chemistry.
 - Optimize surface metallurgical properties.
- Suppress β_{MAG}
 - Optimize EP for *defect correction*.
 - Mechanical polishing before EP as demonstrated at KEK?
- Raise d
 - Thermal conductivity near EBW.
 - Starting material property optimization.
 - Restore phonon peak by recovering/annealing?