

Akira Yamamoto

ILC-GDE Project Manager / KEK

To be presented at ILC-10, Beijing, March 28, 2010

2010.3.28 A. Yamamoto

ÌÌĹ

ILC Cavity Gradient

1

TDP Goals of ILC-SCRF R&D as of March 2010, in TPD-1. **Cavity Field Gradient (S0)** 35 MV/m in vertical test **Cavity-string Assembly in Cryomodule (S1)** <31.5 MV/m> in cavity string test in cryomodule To be re-evaluated in preparation for SB-2009 proposal. Efficient R&D with "Plug-compatibility" for improvement and 'creative work' in R&D (TDP) phase **Accelerator System with SCRF (S2)** Beam Acceleration with SCRF Accelerator Unit Need to discuss an reliable, operational field gradient including adequate HLRF/LLRF control margin for stable operation Industrial Production R&D Preparing for production, quality control, cost saving "Plug compatibility" for global sharing in production phase 2010.3.28 A. Yamamoto **ILC Cavity Gradient** 2

ic Global Plan for SCRF R&D

Year	07	2008	3 2	009	2(010	2011	2012
Phase		TDP-1				TDP-2		
Cavity Gradient in v. test to reach 35 MV/m		\rightarrow Yield 50% \rightarrow			Yield	90%		
Cavity-string to reach 31.5 MV/m, with one- cryomodule		Global effort for string assembly and test (DESY, FNAL, INFN, KEK)						
System Test with beam acceleration		l	FLASI S ⁻	<mark>Н (DE</mark> ГF2 (ESY) KEK	, NN K, exte	IL (FNAL end beyor	.) nd 2012)
Preparation for Industrialization				Ρ	rod	uctio	n Techn R&D	ology

What we need to Discuss?

- Fundamental Research to improve 'Gradient'
 - R&D status and understanding of limit
 - Strategy for improvement
- Preparation for 'Industrialization'
 - Cost effective production and quality control
 - 90 % (9-cell cavity) corresponding to ~ 99 % (1-cell cavity)
 - Balance between R&D and ILC operation parameters with beam,
- System Design and Engineering
 - Integration (compatibility, alignment, accuracy)
 - Optimization with other components,
 - CFS, HLRF/LLRF, Beam handling, and others,
 - Best Operation Gradient to be determined

ILC Gradient Goals

500 GeV: Gradient and Q

Based on BCD cavity shape (TESLA cavity)

- BCD: Linac operating performance Eacc = 31,5 MV/m; Q = 1x10¹⁰
- BCD: Installed performance Eacc ≥ 35 MV/m; Q ≥ 0.8x10¹⁰
 - Required R&D
 - Reduction of field emission and multipacting
 - Reduction of scatter of cavity performance

H.Edwards, D.Proch, K.Salto, ILC snowmass 05, Wg5

2005 Snowmass BCD proposal

4.1.2 Issues of Main Linac System Design

2010.3.28 A. Yamamoto

3/28/10 Rongli Geng

In conjunction with the (GDE and AAP) review process in 2010, based on the current R&D results we propose to keep the cavity gradient goals at 35MV/m in vertical test,S0, and 31.5MV/m in operation in an installed cryomodule, S1. We note that as the R&D progresses, including horizontal testing of

ILC Cavity Gradient

ILC10, Beijing, China

Parameter	Value		
Type of accelerating structure	Standing Wave		
Accelerating Mode	TM_{010} , π mode		
Fundamental Frequency	1.300 GHz		
Average installed gradient	31.5 MV/m		
Qualification gradient	35.0 MV/m		
Installed quality factor	\geq 1 $ imes$ 10 ¹⁰		
Quality factor during qualification	$\geq \! 0.8 \! \times \! 10^{10}$		
Active length	1.038 m		
Number of cells	9		
Cell to cell coupling	1.87%		
Iris diameter	70 mm		
R/Q	1036 R		
Geometry factor	270Ω		
Epeak/Encc	2.0		
$B_{\rm peak}/E_{\rm acc}$	$4.26 \text{ mT MV}^{-1}\text{m}^{-1}$		
Tuning range	$\pm 300 \text{ kHz}$		
$\Delta f / \Delta L$	315 kHz/mm		
Number of HOM couplers	2		

2007 RDR

SB2009

5

Standard Process Selected in Cavity Production and the Yield

	Standard Cavity Recipe
Fabrication	Nb-sheet (Fine Grain)
	Component preparation
	Cavity assembly w/ EBW (w/ experienced venders)
Process	1st Electro-polishing (~150um)
	Ultrasonic degreasing with detergent, or ethanol rinse
	High-pressure pure-water rinsing
	Hydrogen degassing at > 600 C
	Field flatness tuning
	2nd Electro-polishing (~20um)
	Ultrasonic degreasing or ethanol
	High-pressure pure-water rinsing
	Antenna Assembly
	Baking at 120 C
Cold Test (vert. test)	Performance Test with temperature and mode measurement (1 st / 2 nd successful RF Test)

İİĹ

Historical Progression of Up-to-second-pass yield w/ qualified vendors

GDE: 1.Oct.2009

AAP: 6-7Jan.2010

ILC-10: 28 March, 2010

Camille Ginsburg & DB Team:				
Yield and statistical uncertainties:	>25 MV/m		>35 MV/m	
Reported, March 27, 2010:	1st pass	2nd pass	1st pass	2nd pass
ALCPG-Albuquerque 1.Oct.2009	63+-10	67+-10	23+-9	33+-10
AAP-Oxford 6.Jan.2010	63+-9	64+-10	27+-8	44+-10
ILC-10-Beijing 28.Mar.2010	66+-8	70+-9	28+-8	48+-10

2010.3.28 A. Yamamoto

IC Alternative Yield Plot Analysis

originated by N. Walker and updated by J. Kerby

-Yield: estimated assuming a specific lower cut-off in cavity performance, below which cavities are assumed 'rejected'. - Error bar: +/- one RMS value (standard deviation of the population) of the remaining (accepted) cavities (gradient above cut-off). - Additional bars (min, max) indicated the minimum and maximum gradients in the remaining cavities.

2010.3.28 A. Yamamoto

To Establish ILC Operational Gradient

- The RDR has a gradient goal of 35MV/m such that a machine performance based on 31.5MV/m (-10%) may be achieved, and S1 and S2 goals have been set at 31.5MV/m
- This 10% reduction was assumed (in Snowmass, 2005)
 - to include limitations due to both 'final assembly problems' and required 'machine operational overhead associated with HLRF/LLRF and beam-loading'
- Further efforts on cavity performance, TDP-2 gives several opportunities to further investigate and quantify the actual required value, and thus the machine design
 - FLASH at DESY
 - NML at FNAL
 - STF2 at KEK

FLASH layout (now)

New layout

2010.3.28 A. Yamamoto

From Nick's talk at FLASH workshop at DESY, on Feb. 22: Cavity tilts with long bunch trains and heavy beam loading (3mA and 7.5mA, long bunch trains)

Gradient tilts are a consequence of using a single RF source to power cavities running at different gradients

At 7.5mA, ACC6 cavities #1 and #2 approached their quench limits at the end of the pulse

The RF power during flat-top is higher than the fill power for the 7.5mA case S1 Goal: Achieved at DESY/XFEL

First XFEL prototype module exceeds 31.5 MV/m average

- Module will see beam in FLASH in 2010 (av. of 30MV/m)
- Cryostat (cryomodule cold-mass) contributed by IHEP, in cooperation with INFN

İİĻ

FLASH Cryomodule Layout and Field Gradient

2010.3.28 A. Yamamoto

ic What we need to study in TDP-2

Balance between R&D target values and Operational parameters
Will be reviewed after S1 experience
System design should require reasonable margin for the individual component and the system operation

S1 (~ Component performance) > ILC-Acc. Operational Gradient

	RDR/SB2009	Re-optimization required with cautious, systematic design		
R&D goal: S0	35 (> 90%)	35 MV/m (> 90 %) <i>Keep it, and forward looking</i>		
S1 (w/o beam)	31.5 in av.	need: > 31.5 in av., to be further optimized	31.5 in av.	
S2 (w/ beam acc.)	31.5 in av.	> 31.5 in av.	31.5 in av.	
ILC: operational gradient	31.5 in av.	31.5 in av. (+/- 10 ~ 20 %)	or: < 31.5 in av,, to be further optimized	

A Proposal for Cavity Gradient

- Appropriate balance should be re-considered b/w
 - R&D stage and Project stage
 - Components and Accelerator System Operation
- A new guideline toward TDP-2 and TDR
 - R&D Goal for Cavity Gradient (unchanged) : 35 MV/m (@ 90 % yield)
 - Guideline for System Engineering to be updated:
- Our homework
 - How much gradient spread to be allowed?
 - To be optimized within 10 20 % in balance of RF distribution efficiency
 - Can we justfy the above operational margins?
 - ~ 5 % in Cavity (itself) operational margin in cryomodule operation
 - To prevent excessive field/field-emission/cryogenics-load and quench
 - ~ 5 % in LLRF/HLRF and beam tune-ability and operational margin or overhead
 - We shall learn FLASH/NML/STF progress in TDP-2

ilr

Summary

In SB2009, ILC operational field gradient left unchanged CF&S study enables to stay at 31 km in ML tunnel length

- <u>R&D Goal</u> for SCRF cavity gradient
 - Keep: 35 MV/m (at Q0 = 8E9) with the production yield of 90 %,
 - Allow: Spread of cavity gradient effective to be taken into account
 - to seek for the best cost effective cavity production and use,
- System Design to establish ILC operational gradient
 - Necessary adequate balance/redundancy between the 'R&D gradientmilestone' and the 'ILC operational gradient
 - G _{Cavity} > G _{Cryomodule} > G _{ILC-operation}
 - <35 MV/m> : <33 MV/m> : <31.5 MV/m>
- Industrialization to be prepared
 - Lab's collaboration and effort with regional varieties/features,
 - Industrialization model to be discussed and studied

• A satellite meeting for the 'ILC cavity Industrialization at IPAC, May 23, 2010.