Single Photon Events

WIMP Searches and Constraining the Neutralino Sector

Christoph Bartels

DESY

LCWS10 Beijing, 26. - 30. March 2010

Single Photon Events at the ILC

Studying Detector and Reconstruction with Photons

Model Independent WIMP Search

Outline

2 Studying Detector and Reconstruction with Photons

3 Model Independent WIMP Search

Single Photon Events and DM at the ILC

WIMP Dark Matter Component

- Masses of 0.1–1 TeV
- In thermal equilibrium with SM soup after inflation
- Weak interactions naturally give observed relic density
- In SUSY with conserved R-Parity: LSP: $\tilde{\chi}_1^0$ or \tilde{G}

Pair production at ILC

- $e^+e^- \rightarrow \chi \chi$
- WIMPs leave detector without further interaction
- Detection via ISR: $e^+e^- \rightarrow \chi \chi \gamma$
- Missing *E*
- Dominant background: $e^+e^- \rightarrow \nu\nu(N)\gamma$
- Other background: Bhabha-scattering

Motivation I

Detector issues, R&D

- Convergance of detector models (LDC + GLD \rightarrow ILD)
- Detailed detector simulations exist
- In the run-up for the TDR questions arrise:
 - In order to do precision physics:
 - Do we understand our detectors: e. g. energy resolution?
 - What about hermiticity, 4π -detector?
 - Do we understand beam-related backgrounds enough?
- Reconstruction algorithm at high level of sophistication
 - Does the PFlow concept work
 - Jet-energy resolution
 - Photon recognition

We have all the tools to tackle these questions with full simulation studies, and many of them are on the way.

C. Bartels (DESY)

WIMPS @ ILC

Motivation II

Physics I, SUSY

- SPE increase the reach on $\tilde{\chi}_1^0$ searches to $M_{\tilde{\chi}_1^0} \leq 250 \text{ GeV}$
- Study direct $\tilde{\chi}_1^0$ pair production
- Another method to determine:
 - $M_{\tilde{\chi}_1^0}$
 - σ
 - Spin of exchange particle
- Get additional information on Neutralino sector, might be important in CP-violating scenarios

Physics II

- Ideal channel to search model independent for new physics
- Well understood SM background: $e^+e^- \rightarrow \nu\nu(N)\gamma$
- Large S/B \sim 10⁻¹–10⁻², Infer σ and M_{χ} of generic WIMPs

Outline

Studying Detector and Reconstruction with Photons

Parameter Scans

Reconstruction, Photon Splitting

ILD00, Reconstruction with Marlin/Pandora

Photon splitting

- On average \geq 1 photon candidate reconstructed per MC photon
- High energetic very forward photons in Barrel/Endcap region
- Conversions in TPC Endplate, no tracking before ECAL

Reconstruction, Photon Splitting

ILD00, Reconstruction with Marlin/Pandora

Photon splitting

- On average \geq 1 photon candidate reconstructed per MC photon
- High energetic very forward photons in Barrel/Endcap region
- Apply merging procedure

Radiation Length

Simple consistency check of data and detector description

Outline

2 Studying Detector and Reconstruction with Photons

Model Independent WIMP Search

Model Independent Production Cross Section Birkedal *et al.* [hep-ph/0403004]

Model independence

- Assume only one DM candidate, no co-annihilation
- Constrain WIMP pair annihilation XSec from observation
- Crossing Symmetrie (annihilation ⇒ production)
- ISR

$$rac{d\sigma}{dx}\sim\kappa_{e}(P_{e},P_{p})2^{2J_{0}}(2S_{\chi}+1)^{2}igg(1-rac{4M_{\chi}^{2}}{(1-x)s}igg)^{1/2+J_{0}}$$

- $\kappa_e(P_e, P_p)$: Helicity dependent annihilation fraction to e^+e^-
- S_{χ} : Spin, scale factor
- M_{χ} , $J_0 \rightarrow$ shape, J_0 dominant partial wave

Cut-off in signal cross section determines WIMP mass Energy resolution crucial

- $\kappa_e(P_e, P_p)$: Helicity dependent annihilation fraction to e^+e^-
- S_{χ} : Spin, scale factor
- M_{χ} , $J_0 \rightarrow$ shape, J_0 dominant partial wave

Signal shape at threshold provides information on partial wave, or Spin of exchange particle in SUSY scenarios.

Energy resolution crucial

- $\kappa_e(P_e, P_p)$: Helicity dependent annihilation fraction to e^+e^-
- S_{χ} : Spin, scale factor
- M_{χ} , $J_0 \rightarrow$ shape, J_0 dominant partial wave

- $\kappa_e(P_e, P_p)$: Helicity dependent annihilation fraction to e^+e^-
- S_{χ} : Spin, scale factor
- M_{χ} , $J_0 \rightarrow$ shape, J_0 dominant partial wave

Scope of analysis

Sensitivity study: What can we see in a background dominated environment?

Limits on:

- Cross section
- Coupling parameter κ
- Mass resolution
- Determination of partial wave J_0

Machine and detector

- Beam polarisation, especially positrons
- Influence of detector resolution

Outline

2) Studying Detector and Reconstruction with Photons

2σ reach on κ ($\mathcal{L} = 200 \text{ fb}^{-1}$)

Search strategy

- For each mass hypothesis:
- Apply mass dependent cuts on photon energy
- Lower cut ensures non-relativistic WIMPS
- Upper cut given by kinematic limit
- Test different polarisations
- mSUGRA interpretation: "typical": $\kappa \approx 0.3$ in bulk of parameter space

$$S = 0$$

$$\kappa(e_L p_R) = \kappa(e_R p_L)$$

$$(P_L P_p) = (0.8/-0.6)$$

$$(P_L P_p) = (0.8/-0.3)$$

$$(P_L P_p)$$

2σ reach on κ ($\mathcal{L} = 200 \text{ fb}^{-1}$)

WIMPS @ ILC

C. Bartels (DESY)

Measurement of M_{χ}

Find Cut-off in detected photon energies

C. Bartels (DESY)

Measurement of M_{χ} (2007)

Template fit

- Fixed parameters:
 - *M*_{\chi} = 180 GeV

 - S = 1
 - *J*₀ = 1
 - $\mathcal{L} = 500 \text{ fb}^{-1}$
- Different polarisations
 - (0.0,0.0) (solid)
 - (0.8,0.0) (dotted)
 - (0.8,-0.6) (dashed)

- Resolution typically 3 GeV to 1 GeV over large range of parameters
- Polarisation dependent

Simultaneous fit of M_{χ} , σ and J_0

Find Cut-off in detected photon energies, measure shape at threshold

C. Bartels (DESY)

Simultaneous Determination of M_{χ} , σ_{bg} , σ_{sig} and J_0

M_{in}: 180 GeV; J_{in}: 1

- Energy spectrum of ISR photons
- Background (black)
- Signal (red)
- Simultaneous fit of spectrum to S+B spectrum
- Four Free parameters:
 - Normalisation of background
 - Normalisation of signal
 - *M*_{{\chi}
 - *J*₀

Simultaneous Determination of M_{χ} , σ_{bg} , σ_{sig} and J_0

M_{in}: 180 GeV; J_{in}: 1

- $M = 173.8 \pm 5.1 \text{ GeV}$
- $J = 1.264 \pm 0.338$
- J = 0 excluded
- First attempt, only one model point
- Improvements expected with better description of background shape

Summary

- WIMP detection with ISR, model independent approach
- Full simulation of ILD detector
- Sensitivity to coupling $\kappa \Leftrightarrow$ cross section
- Increase of reach with polarised beams
- Work in progress: Mass and J determination
- To do: handling of background
- Incorporate other backgrounds, systematics ...

Motivation II

G. Belanger et al., [hep-ph] 0803.2584

Example, CPVMSSM at ILC

- Neutralino LSP dominantly Bino
- Only τ 's and E_T^{miss} at ILC
- Relic density $\Omega h^2 = 0.130$
- CPV phase ϕ_1

Reconstruction, Efficiency

Merge photon candidates

- Collect all photon candidates in cone from IP
- High purity: No missmatch
- High efficiency: All candidates matched
- Cone opening angle of 0.04 rad seems good choice

Simulation and data

SM background (SLAC mass production)

ILD00, Mokka 06-07

Process	N _{rec.events}	\mathcal{L} per Pol. [fb ⁻¹]
ν _e ν _e γ (-1.0/1.0)	1,999,766	133
ν _e ν _e γ (1.0/-1.0)	99,320	250
$\nu_{\rm e} \nu_{\rm e} \gamma \gamma$	510,000	250
$ u_{\rm e} \nu_{\rm e} \gamma \gamma \gamma$	36,000	250
$ u_{\mu} u_{\mu}\gamma$	250,000	250
$ u_{\mu} u_{\mu}\gamma\gamma$	50,000	250
$ u_{\mu}\nu_{\mu}\gamma\gamma\gamma$	5,000	250
$ u_{ au} u_{ au}\gamma$	250,000	250
$ u_{\tau}\nu_{\tau}\gamma\gamma$	50,000	250
$ u_{\tau}\nu_{\tau}\gamma\gamma\gamma$	5,000	250
Total	≈3,300,000	

C. Bartels (DESY)

Signal weights

Signal Simulation

- Reweighting of $\nu\nu\gamma$ proceses
- Event weight $w = \frac{\sigma_{\chi\chi\gamma}}{\sigma_{\nu\nu\gamma}}$
- Only one simulation and reconstruction cycle needed

Example signal plot