Signals of Universal Extra Dimension at the Linear Collider

Biplob Bhattacherjee

Tata Institute of Fundamental Research, India

First motivated by Kaluza (1921) and Klein (1926).

- First motivated by Kaluza (1921) and Klein (1926).
- Today, motivation comes from string theory, which need a number of compactified EDs.

- First motivated by Kaluza (1921) and Klein (1926).
- Today, motivation comes from string theory, which need a number of compactified EDs.
- Different models: Number of EDs, compactification manifold, number and positions of branes and which particles can go into the bulk.

- First motivated by Kaluza (1921) and Klein (1926).
- Today, motivation comes from string theory, which need a number of compactified EDs.
- Different models: Number of EDs, compactification manifold, number and positions of branes and which particles can go into the bulk.
- In Universal Extra Dimension (UED) type models,all standard model particles are placed in the bulk , no need for branes. (Appelquist, Cheng and Dobrescu, PRD 64, 035002, 2001)

- First motivated by Kaluza (1921) and Klein (1926).
- Today, motivation comes from string theory, which need a number of compactified EDs.
- Different models: Number of EDs, compactification manifold, number and positions of branes and which particles can go into the bulk.
- In Universal Extra Dimension (UED) type models,all standard model particles are placed in the bulk , no need for branes. (Appelquist, Cheng and Dobrescu, PRD 64, 035002, 2001)
- Best candidate to mimic SUSY, and an alternative to SUSY to give cold dark matter

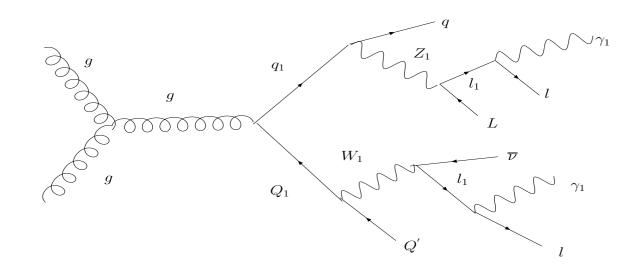
Minimal UED : A five-dimensional model (x^{μ}, y)

- Minimal UED : A five-dimensional model (x^{μ}, y)
- The fifth dimension, y is compactified (S^1/\mathbb{Z}_2) (Orbifolding is Necessary to get chiral fermions of the SM)

- Minimal UED : A five-dimensional model (x^{μ}, y)
- The fifth dimension, y is compactified (S^1/\mathbb{Z}_2) (Orbifolding is Necessary to get chiral fermions of the SM)
- In 4d for each low mass(zero mode) SM particle we get an associated KK tower:degenerate (~n/R)

- Minimal UED : A five-dimensional model (x^{μ}, y)
- The fifth dimension, y is compactified (S^1/\mathbb{Z}_2) (Orbifolding is Necessary to get chiral fermions of the SM)
- In 4d for each low mass(zero mode) SM particle we get an associated KK tower:degenerate (~n/R)
- **•** Conservation of KK number: conservation of p_5

- Minimal UED : A five-dimensional model (x^{μ}, y)
- The fifth dimension, y is compactified (S^1/\mathbb{Z}_2) (Orbifolding is Necessary to get chiral fermions of the SM)
- In 4d for each low mass(zero mode) SM particle we get an associated KK tower:degenerate (~n/R)
- Conservation of KK number: conservation of p_5
- Radiative corrections: Degeneracy is removed partially


- Minimal UED : A five-dimensional model (x^{μ}, y)
- The fifth dimension, y is compactified (S^1/\mathbb{Z}_2) (Orbifolding is Necessary to get chiral fermions of the SM)
- In 4d for each low mass(zero mode) SM particle we get an associated KK tower:degenerate (~n/R)
- Conservation of KK number: conservation of p_5
- Radiative corrections: Degeneracy is removed partially
- Boundary corrections break KK number conservation down to KK Parity $(-1)^n$ conservation

- Minimal UED : A five-dimensional model (x^{μ}, y)
- The fifth dimension, y is compactified (S^1/\mathbb{Z}_2) (Orbifolding is Necessary to get chiral fermions of the SM)
- In 4d for each low mass(zero mode) SM particle we get an associated KK tower:degenerate (~n/R)
- Conservation of KK number: conservation of p_5
- Radiative corrections: Degeneracy is removed partially
- Boundary corrections break KK number conservation down to KK Parity (-1)ⁿ conservation
 (Cheng Matchev, Schmaltz PRD 2002)

• n = 1 particles must be pair produced(Conservation of KK Parity) and decay to γ_1 (LKP:DM Candidate)

Expectation from LHC

- LHC: KK gluon and KK quarks can be produced copiously
- Collider signature of UED: Multijet + multilepton + Missing energy (Cheng Matchev, Schmaltz PRD 2002)

The signal can mimic SUSY at collider

Expectation from LHC

- LHC: KK gluon and KK quarks can be produced copiously
- Collider signature of UED: Multijet + multilepton + Missing energy
- The signal can mimic SUSY at collider

Difference : UED vs SUSY

- Spins are different
 (Spin measurement is difficult at the LHC)
- n=2,3 excited states

(People have studied Z_2 , γ_2 production at the LHC)

Higgs sector

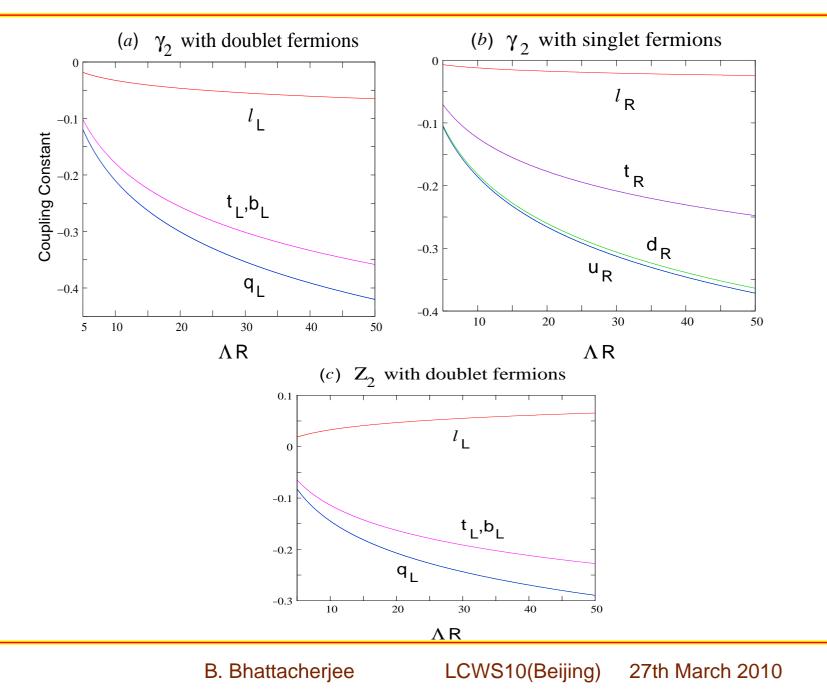
(UED: one doublet + KK modes SUSY: two doublets + superpartners)

n = 2 Gauge Bosons

Image n = 2 gauge bosons can couple to two SM fermions via KK number violating coupling

n = 2 Gauge Bosons

- Image n = 2 gauge bosons can couple to two SM fermions via KK number violating coupling
- Need same energy to produce two n = 1 states or one n = 2 state


n = 2 Gauge Bosons

- n = 2 gauge bosons can couple to two SM fermions via
 KK number violating coupling
- Need same energy to produce two n = 1 states or one n = 2 state
- The production goes through the coupling

$$\overline{f_0}f_0V_2 \longrightarrow \left(-ig\gamma^{\mu}T_aP_+\right)\frac{\sqrt{2}}{2}\left(\frac{\overline{\delta}(m_{V_2}^2)}{m_2^2} - 2\frac{\overline{\delta}(m_{f_2})}{m_2}\right)$$

where $m_2 = 2/R$, T_a is the group generator

Couplings

– p. 7

Z₂ can decay to leptonic KK-conserving channels
 (kinematics) or KK-violating channels, but it is almost W₃, so couples only to doublets

- Z₂ can decay to leptonic KK-conserving channels
 (kinematics) or KK-violating channels, but it is almost W₃, so couples only to doublets
- $\mathbf{P} \gamma_2$ can decay only through KK-number violating channels

- Z₂ can decay to leptonic KK-conserving channels
 (kinematics) or KK-violating channels, but it is almost W₃, so couples only to doublets
- $\mathbf{P} \gamma_2$ can decay only through KK-number violating channels
- KK conserving and violating decays are equally important: either kinematic or phase-space suppression

- Z₂ can decay to leptonic KK-conserving channels
 (kinematics) or KK-violating channels, but it is almost W₃, so couples only to doublets
- $\mathbf{P} \gamma_2$ can decay only through KK-number violating channels
- KK conserving and violating decays are equally important: either kinematic or phase-space suppression
- Z_2 and γ_2 can be produced as s-channel resonances

- Z₂ can decay to leptonic KK-conserving channels
 (kinematics) or KK-violating channels, but it is almost W₃, so couples only to doublets
- $\mathbf{P} \gamma_2$ can decay only through KK-number violating channels
- KK conserving and violating decays are equally important: either kinematic or phase-space suppression
- Z_2 and γ_2 can be produced as s-channel resonances
- At the LHC Z_2 and γ_2 can be seen as a dimuon/dielectron resonances (Datta, Kong, Matchev PRD 2005, Matsumoto et al. PRD 2009)

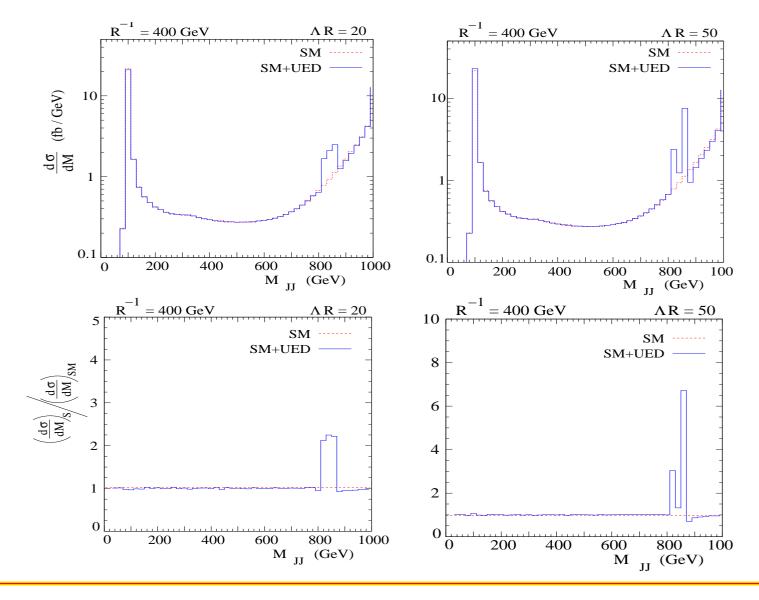
- Z₂ can decay to leptonic KK-conserving channels
 (kinematics) or KK-violating channels, but it is almost W₃, so couples only to doublets
- $\mathbf{P} \gamma_2$ can decay only through KK-number violating channels
- KK conserving and violating decays are equally important: either kinematic or phase-space suppression
- Z_2 and γ_2 can be produced as s-channel resonances
- At the LHC Z_2 and γ_2 can be seen as a dimuon/dielectron resonances (Datta, Kong, Matchev PRD 2005, Matsumoto et al. PRD 2009)
- These two peaks may or may not be resolvable.

Again Z_2 and γ_2 can be produced as s-channel resonances

- Again Z_2 and γ_2 can be produced as s-channel resonances
- Positions of these two peaks should give Λ and R and should completely determine the fermionic UED spectrum

- Again Z_2 and γ_2 can be produced as s-channel resonances
- Positions of these two peaks should give Λ and R and should completely determine the fermionic UED spectrum

Problem
 ILC is a fixed CM machine
 Resonances may several decay width away from \sqrt{s} \implies no signal of any significance.


- Again Z_2 and γ_2 can be produced as s-channel resonances
- Positions of these two peaks should give Λ and R and should completely determine the fermionic UED spectrum

Problem
 ILC is a fixed CM machine
 Resonances may several decay width away from \sqrt{s} \implies no signal of any significance.

Radiative return will save us.

Bump hunting at the ILC

Bhattacherjee, Rai, Raychaudhuri, Kundu PRD (2008)

B. Bhattacherjee

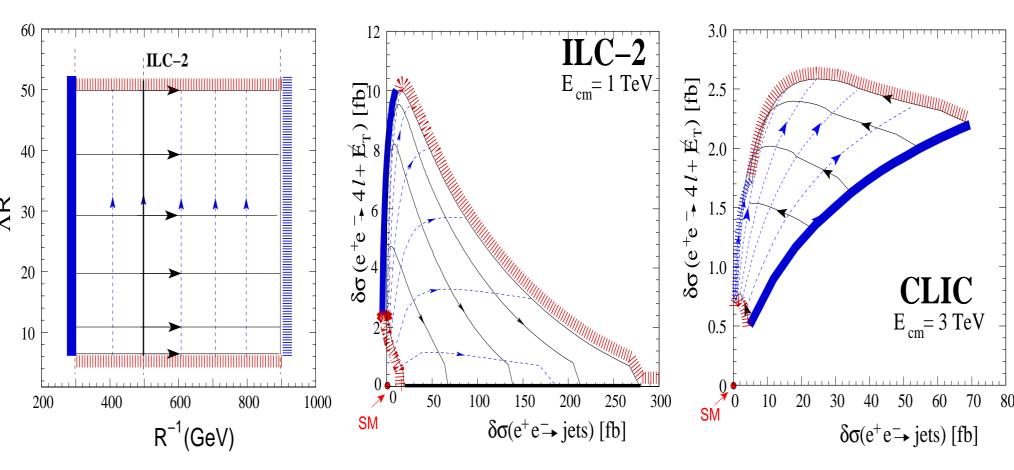
LCWS10(Beijing) 27

27th March 2010

Observation of a high-mass resonance, or a pair of such resonances = UED ?

Observation of a high-mass resonance, or a pair of such resonances = UED ?

No


Other models

Possible source of a single bump in the dijet invariant mass spectrum :

- A resonant Z' boson, predicted in models with extra U(1) symmetries.
- A heavy sneutrino $\tilde{\nu}_{\mu}$ or $\tilde{\nu}_{\tau}$ in a SUSY model with *R*-parity-violating couplings.
- A massive graviton G_1 , predicted in the Randall-Sundrum model.

- A pair of heavy Z' bosons, with an ordinary Z boson radiated from any of the fermion legs
- a pair of heavy W'^{\pm} bosons, with an ordinary Z boson radiated from any of the fermion legs
- A pair of heavy neutralinos $\tilde{\chi}_i^0 \tilde{\chi}_j^0$ (*i*, *j* > 1), each of which decays as $\tilde{\chi}_i^0 \to \ell \tilde{\ell} \to \ell(\ell \tilde{\chi}_1^0)$ (irreducible)

Correlation plot

ILC Summary

- LHC may provide hints of UED but ILC will settle the issue.
- There is no 'smoking gun' signal of UED.
- One can look for peaks in the invariant mass distribution and four lepton excess to identify an underlying UED.
- ILC environment is cleaner than LHC
- Correlation plot can be used to pin down parameters R^{-1} and ΛR ; may also hint at nonminimal UED.
- By measuring angular distributions, threshold scan, one can reconfirm UED (Battaglia et al. JHEP 2005).
- ILC is needed to identify UED!

Scalar sector of UED

The n-th level Higgs field is parametrized as

$$H_n = \left(\frac{\chi_n^+}{\frac{h_n - i\chi_n^0}{\sqrt{2}}}\right)$$

where χ_n^+ , h_n and χ_n^0 are excitations of charged scalar ,CP even neutral and CP odd neutral scalars.

There are three more scalars , which are 5th components of excitations of gauge bosons Z_n^5 , $W_n^{5\pm}$.

Scalar sector of UED(cont.)

The Goldstone combinations are given by

$$G_n^0 = \frac{1}{m_{Z_n}} \left[m_Z \chi_n^0 - \frac{n}{R} Z_n^5 \right],$$

$$G_{n}^{\pm} = \frac{1}{m_{W_{n}}} \left[m_{W} \chi_{n}^{\pm} - \frac{n}{R} W_{n}^{5\pm} \right].$$

The orthogonal combinations are the physical fields given by H_n^{\pm} , A_n^0 if $1/\mathbb{R} \gg M_{(W,Z)}$, the $n \neq 0$ Goldstones are the 5th component of gauge bosons.

Radiative correction on scalars

The tree level masses of the excited scalars are given by

$$m_{h_n,A_n^0,H_n^{\pm}}^2 = m_n^2 + m_{h,Z,W^{\pm}}^2$$

The radiative correction is given by

$$\delta m_H^2 = m_n^2 \left[\frac{3}{2} g^2 + \frac{3}{4} {g'}^2 - \lambda \right] \frac{1}{16\pi^2} \ln \frac{\Lambda^2}{\mu^2} + \overline{m_h^2}$$

where $\overline{m_h^2}$ is the boundary mass term for the excited scalars, (not a priori calculable)

A few points to be noted :

- Radiative correction to the excited scalar masses is universal.
- H^{\pm} will be the lowest-lying one.
- The hierarchy $m_{h_n} > m_{A_n^0} > m_{H_n^{\pm}}$ is fixed.
- For larger SM Higgs mass H_1^{\pm} and A_1^0 masses go down if we keep $\overline{m_h^2}$ fixed. h_1 will become more massive.
- The excited scalar sector becomes more massive as $\overline{m_h^2}$ goes up, this affects the decay kinematics.

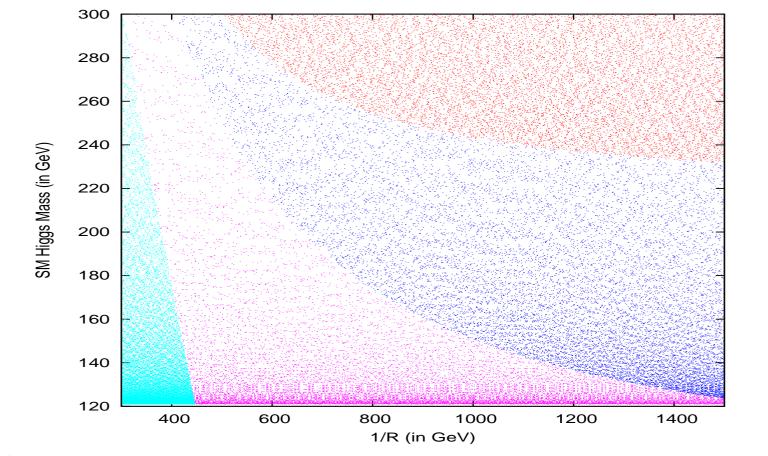
Charged scalar decay

Region 1: $M_{H_1^{\pm}} > M_{l_1^{\pm}}$

■ $H_1^{\pm} \to l_D(e_1, m_1, l_1) + SM \ Neutrino + (e, m, l) + N_1$

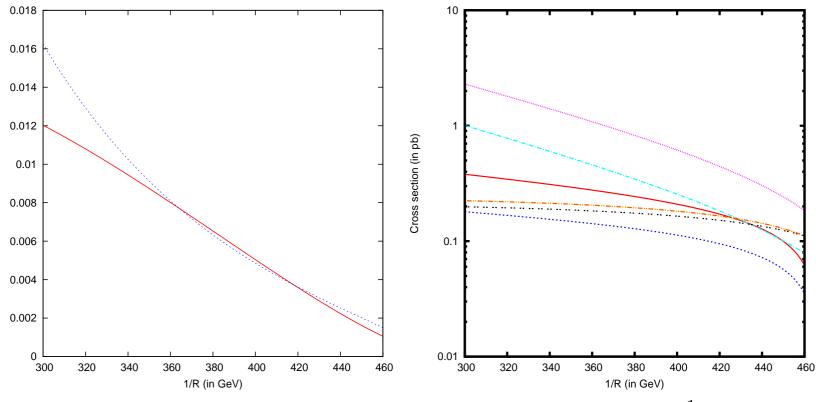
(gauge coupling dominates over Yukawa, universal branching) **Region 2:** $M_{l_1\pm} > M_{H_1\pm} > M_{l_2\pm}$

■ $H_1^{\pm} \rightarrow Singlet \ lepton(l_1) + SM \ Neutrino + h.c$ (Yukawa coupling, only to tau lepton)


Region 3: $M_{l_2^{\pm}} > M_{H_1^{\pm}} > M_{\gamma_1}$

$${\color{black} {oldsymbol{ I}}} \hspace{0.1 in } H_{1}^{\pm}
ightarrow \gamma_{1} + f\overline{f}$$
 (Through virtual W_{1}^{\pm})

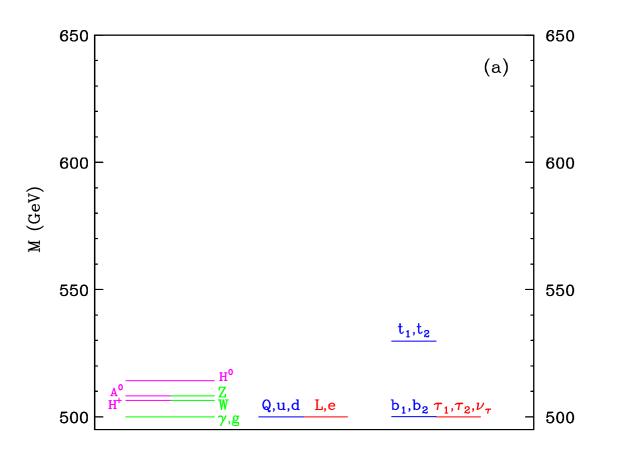
Region 4: $M_{H_1^{\pm}} > M_{W_1^{\pm}}$


•
$$H_1^{\pm} \to W_1^{\pm} + f\overline{f}$$
 (Through virtual W^{\pm})

Parameter space

Red: H^{\pm} is LKP, Blue : $M_{l_2\pm} > M_{H_1\pm} > M_{\gamma_1}$, Magenta: $M_{l_1\pm} > M_{H_1\pm} > M_{l_2\pm}$, Cyan: $M_{H_1\pm} > M_{l_1\pm}$

Cross section


Illustrating the signal cross section and UED backgrounds for $R^{-1} = 350 \text{ GeV}$ Left: blue $\rightarrow W_1^{\pm} H_1^{\pm} + \text{h.c}$, red $\rightarrow H_1^{\pm} H_1^{-}$ Right: From top to bottom $\rightarrow e_1^{+} e_1^{-}$, $e_2^{+} e_2^{-}$, W_1^{+} , W_1^{-} , $m_1 \bar{m}_1$, $m_2 \bar{m}_2$, $Z_1 Z_1$ (Thomas G. Rizzo, PRD 2001).

Summary

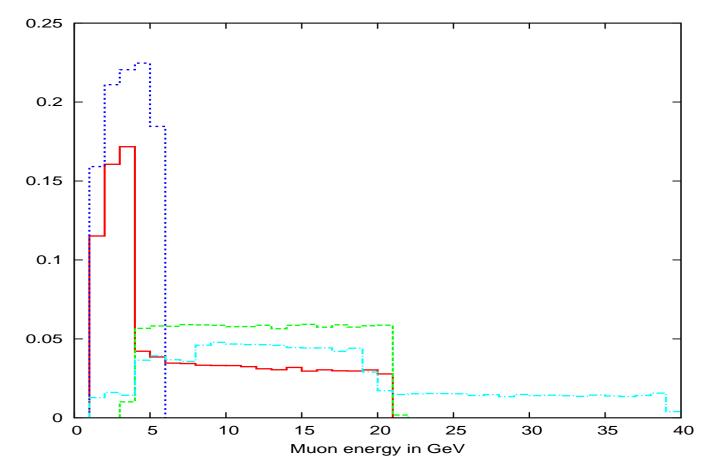
- Minimal UED model contains three scalars: H_n^{\pm} , h_n^0 , A_n^0
- Masses depend on Λ, R^{-1}, m_h and $\overline{m_h^2}$
- These Higgses can decay only leptonically
- Spectrum dictates that the leptons must be soft
- This poses a serious challenge in their detection
- The detector limitation may remove the majority of the signal
- One can study the the scalar sector with polarized beam We also stress that this talk is more of a qualitative nature, and a detailed quantitative study should be taken up.

Thank You

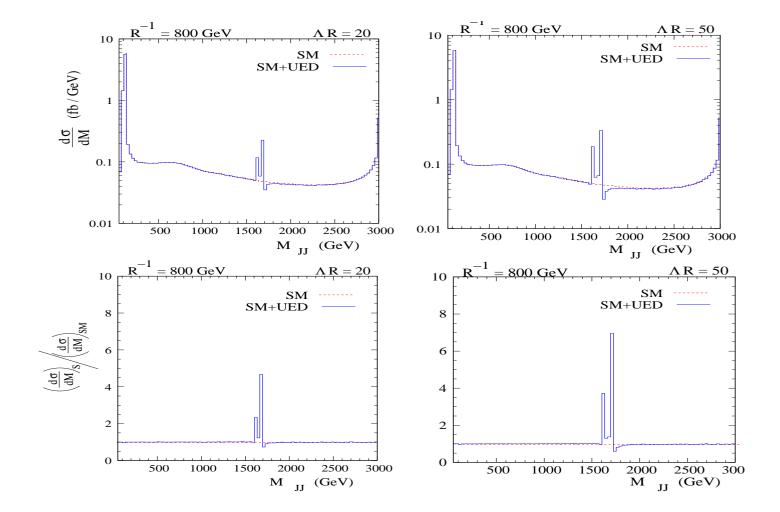
UED Spectrum

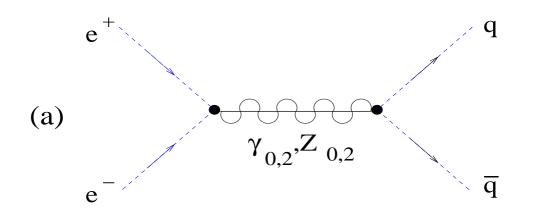
Radiative correction is not included. $R^{-1} = 500$ GeV. Taken

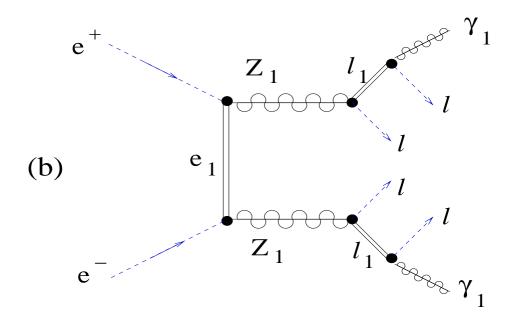
from Cheng, Matchev, Schmaltz, PRD 66, 036005, 2002


UED Spectrum

Radiative correction is included. $R^{-1} = 500 \text{ GeV}, \Lambda R = 20.$


Taken from Cheng, Matchev, Schmaltz, PRD 66, 036005, 2002


Energy spectrum



Normalized muon energy distribution coming from diffrent UED particles R^{-1} =350 GeV (Red line: muon from H_1^{\pm} , Blue line: muon from m_2 ,Green line: muon from m_1 , Cyan line: muon from W_1^{\pm})

Bump hunting at the CLIC

B. Bhattacherjee

LCWS10(Beijing) 27th

27th March 2010