Status Report on Cornell Activities

Zachary A. Conway

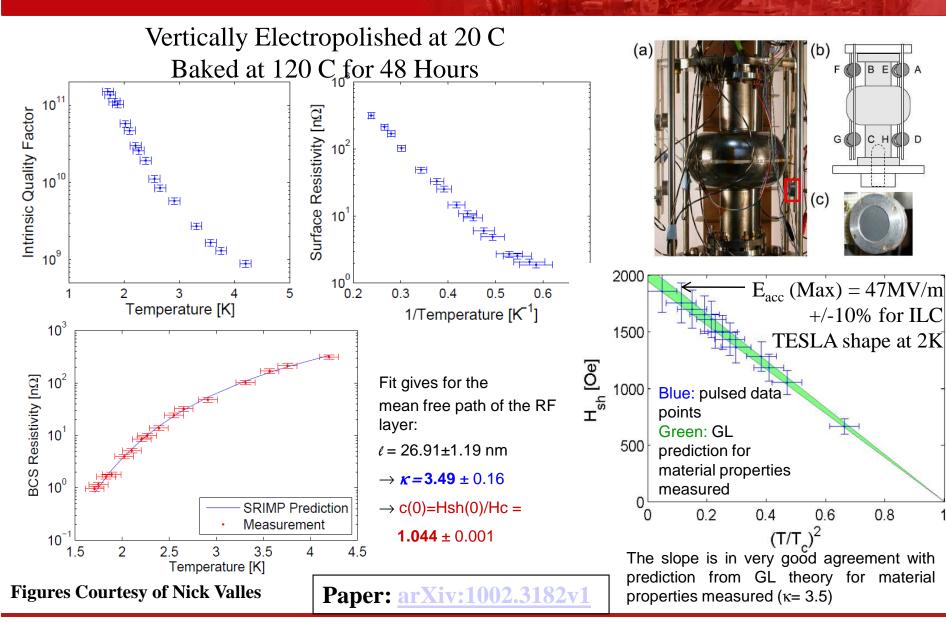
On behalf of the Cornell University

Laboratory for Elementary-Particle Physics

SRF Group

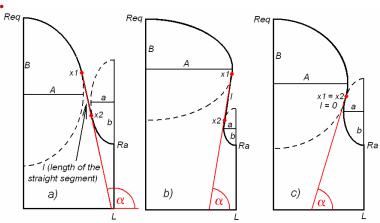
Overview

- Cornell's SRF work can be divided into two areas:
 - Basic SRF Science Research and Development
 - SRF Technology Development
- Outline
 - Superheating Field Measurements
 - Bulk Niobium Cavities
 - Nb₃Sn Cavities
 - SRF Cavity Geometry Optimization
 - Reentrant Cavity Results
 - Cavity Repair via Tumbling
 - Cavity Defect Location
 - Vertical Electropolish Status
 - Cavity T-Mapping


Superheating Field Measurements

- The purpose is to:
 - Determine the temperature dependence of the superheating field
 - Determine the impact of surface preparation on the superheating field
- This is done experimentally by rapidly pulsing single-cell 1.3 GHz cavities to the superheating field, avoiding thermal effects.
- This work is being performed by Nicholas Valles, a graduate student, working with Prof. Matthias Liepe.

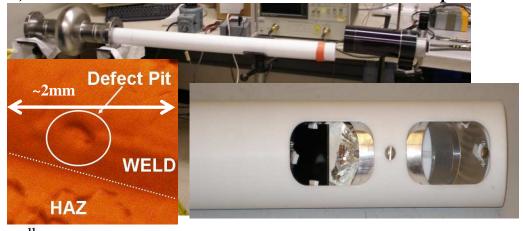
March 29, 2010 ILC 2010 3

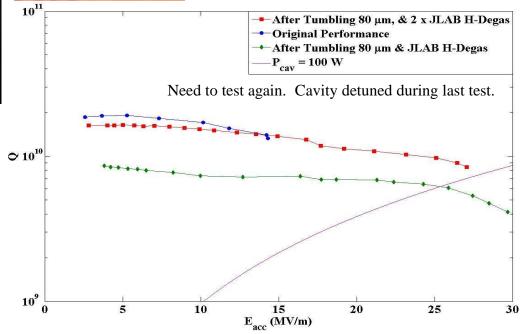

Superheating Field Measurements

Cavity Geometry Optimization

- SRF Cavities for the ILC are now starting to surpass accelerating gradients of 40 MV/m.
- The associated peak surface magnetic fields are approaching the theoretical limit.
- A way to increase the accelerating gradient is modifying the cavity geometry to lower the ratio of the peak surface magnetic field to accelerating gradient.
- Valery Shemelin has optimized a 70mm diameter beam tube cavity geometry which we will build and test.
 - $E_{pk}/E_{acc} = 1.2$
 - $H_{pk}/E_{acc} = 3.76 \text{ mT/(MV/m)}$
- Our current prototype results next

For an guide to this work refer to: V. Shemelin, H. Padamsee, and R. L. Geng. Optimal cells for TESLA accelerating structure. Nuclear Instruments and Methods in Physics Research A, 496:17, January 2003

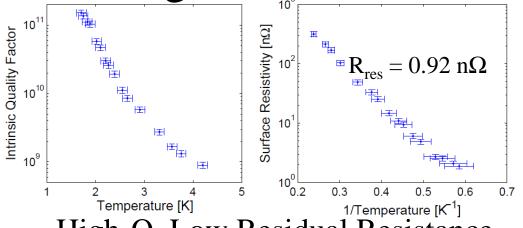



Cavity Geometry Optimization: Reentrant Cavity Tests

1) Defect location with OSTs

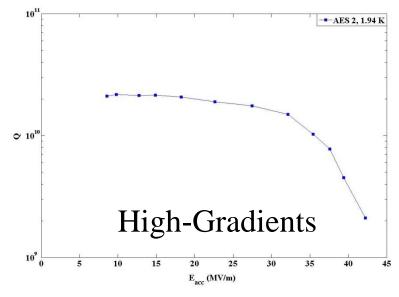
2) Defect characterization with microscope

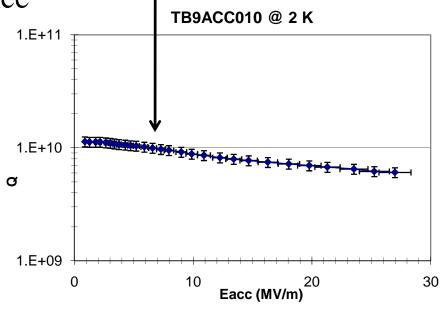
Vertical Electropolish Status


- A new engineer, Paul Carriere, is being trained to take over Vertical Electropolish operation.
- We have had several good results and we are working toward stateof-the-art ILC 9-cell cavity performance.
- We are finding that our JLAB and MSU colleagues recommendations to lower the temperature of the polish and reduce the agitation are helping considerably.
- Due to the high cost of 9-cell tests our work has focuses on single cell cavities.
 - We now have a helium recovery and liquefaction system, we can start test 9-cell cavities in a cost effective manner
 - The first operation of this system occurred last week

March 29, 2010 ILC 2010 7

Vertical Electropolish Status


Single Cell Results



9-Cell Results

Too much agitation during polishing is a bad thing!

Multi-Cell Cavity Temperature Mapping

- In order to better understand the limiting mechanisms in 9-cell cavities for the ILC we are developing a multi-cell T-map system capable of mapping TESLA-style cavities with 3, 5, 6, 8, and 9 cells.
- This work is being performed by David Meidlinger and Eric Chojnacki.

Summary

- We are working on both basic research and applied development for the ILC superconducting cavities.
- We are now able to recover and liquefy helium.
 - 9-cell ILC tests are starting to be affordable for us.
 - We can process and test more 9-cell cavities
- Our development and proving of vertical electropolishing in 9-cell cavities is becoming more of a focus.
- New tools are here and coming online to study and repair cavities @ Cornell: OST defect location and multi-cell Temperature mapping.

March 29, 2010 ILC 2010