ILC beam-parameters and the $\tilde{\tau}$ channel in SPS1a'

Mikael Berggren¹

¹DESY, Hamburg

LCWS, Beijing, 28 Mar 2010

Mikael Berggren (DESY)

ILC beam-parameters and the $\tilde{\tau}$ channel in SI

March 28, 2010 1 / 22

Outline

Outline

- $\tilde{\tau}$:s in SPS1a'
- RDR \rightarrow SB2009.
- Conclusions.

э

イロト イヨト イヨト イヨト

Pure mSUGRA model:

$$M_{1/2} = 250 \ GeV, M_0 = 70 \ GeV, A_0 = -300 \ GeV,$$

tan $\beta = 10, sign(\mu) = +1$

Just outside what is excluded by LEP and low-energy observations. Compatible with WMAP, with $\tilde{\chi}_1^0$ Dark Matter.

- All sleptons available.
- No squarks.
- Lighter bosinos, up to $\tilde{\chi}^0_3$ (in $e^+e^- \rightarrow \tilde{\chi}^0_1 \tilde{\chi}^0_3$)

< ロ > < 同 > < 回 > < 回 > < 回 >

$\tilde{\tau}$ in SPS1a'

Features of $\tilde{\tau}$:s in SPS1a'

- In SPS1a', the $\tilde{\tau}_1$ is the NLSP.
- $M_{\tilde{\tau}_1} = 107.9 \text{ GeV}, M_{\tilde{\tau}_2} = 194.9 \text{ GeV} M_{\tilde{\chi}_1^0} = 97.7 \text{ GeV}/c^2$
- $E_{\tilde{\tau}_1,min} = 2.6 \text{ GeV}, E_{\tilde{\tau}_1,max} = 42.5 \text{ GeV}: \gamma \gamma \text{ background}.$
- $E_{\tilde{\tau}_2,min} = 35.0 \text{ GeV}, E_{\tilde{\tau}_2,max} = 152.2 \text{ GeV}: WW \rightarrow l\nu l\nu$ background.
- The τ̃ mass-eigen states ≠ chiral-eigen states. Off-diagonal term of mass-matrix: -M_τ(A_{τ̃} μ tan β).
- $\tilde{\tau}$ NLSP $\rightarrow \tau$:s in most SUSY decays \rightarrow SUSY is background to SUSY.
- For pol=(-1,1): $\sigma(\tilde{\chi}_2^0 \tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+ \tilde{\chi}_1^-)$ = several hundred fb and BR(X $\rightarrow \tilde{\tau}$) > 50 %. For pol=(1,-1): $\sigma(\tilde{\chi}_2^0 \tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+ \tilde{\chi}_1^-) \approx 0$.

Polarisation = (0.8, -0.3) assumed.

$\tilde{\tau}$ in SPS1a'

Features of $\tilde{\tau}$:s in SPS1a'

- In SPS1a', the $\tilde{\tau}_1$ is the NLSP.
- $M_{\tilde{\tau}_1} = 107.9 \text{ GeV}, M_{\tilde{\tau}_2} = 194.9 \text{ GeV} M_{\tilde{\chi}_1^0} = 97.7 \text{ GeV}/c^2$
- $E_{\tilde{\tau}_1,min} = 2.6 \text{ GeV}, E_{\tilde{\tau}_1,max} = 42.5 \text{ GeV}: \gamma \gamma \text{ background}.$
- $E_{\tilde{\tau}_2,min} = 35.0 \text{ GeV}, E_{\tilde{\tau}_2,max} = 152.2 \text{ GeV}: WW \rightarrow l\nu l\nu$ background.
- The $\tilde{\tau}$ mass-eigen states \neq chiral-eigen states. Off-diagonal term of mass-matrix: $-M_{\tau}(A_{\tilde{\tau}} \mu \tan \beta)$.
- For pol=(-1,1): $\sigma(\tilde{\chi}_2^0 \tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+ \tilde{\chi}_1^-)$ = several hundred fb and BR(X $\rightarrow \tilde{\tau}$) > 50 %. For pol=(1,-1): $\sigma(\tilde{\chi}_2^0 \tilde{\chi}_2^0)$ and $\sigma(\tilde{\chi}_1^+ \tilde{\chi}_1^-) \approx 0$.

Polarisation = (0.8, -0.3) assumed.

Extracting the $\tilde{\tau}$ properties

From decay kinematics:

- $M_{\tilde{\tau}}$ from $M_{\tilde{\chi}_1^0}$ and end-point of spectrum = $E_{\tau,max}$.
- Need to measure end-point of spectrum.
- In principle: $M_{\tilde{\chi}_1^0}$ turn-over of spectrum = $P_{\tau,min}$, but hidden in $\gamma\gamma$ background.
- Must get $M_{\tilde{\chi}_{1}^{0}}$ from other sources. ($\tilde{\mu}$, \tilde{e} , not yet done)

From cross-section:

•
$$\sigma_{\tilde{\tau}} = A(\theta_{\tilde{\tau}}, \mathcal{P}_{beam}) \times \beta^3 / s$$
, so
• $M_{\tilde{\tau}} = E_{beam} \sqrt{1 - (\sigma s / A)^{2/3}}$: no $M_{\tilde{\chi}_1^0}$!

Topology selection

$\tilde{\tau}$ properties:

- Only two τ :s in the final state.
- Large missing energy and momentum.
- High acollinearity, with little correlation to the energy of the τ decay-products.
- Central production.
- No forward-backward asymmetry.

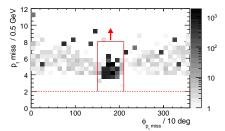
Select this by:

- Exactly two jets.
- *N_{ch}* < 10
- Vanishing total charge.
- Charge of each jet = ± 1 ,
- $M_{jet} < 2.5 \, {
 m GeV}/c^2$,
- *E_{vis}* < 300 GeV,
- $M_{miss} > 250 \text{ GeV}/c^2$,
- No particle with momentum above 180 GeV/*c* in the event.

Topology selection

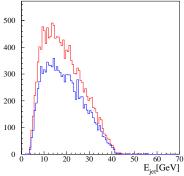
$\tilde{\tau}$ properties:

- Only two τ :s in the final state.
- Large missing energy and momentum.
- High acollinearity, with little correlation to the energy of the τ decay-products.
- Central production.
- No forward-backward asymmetry.


Select this by:

- Exactly two jets.
- *N_{ch}* < 10
- Vanishing total charge.
- Charge of each jet = ± 1 ,
- $M_{jet} < 2.5 \text{ GeV}/c^2$,
- *E_{vis}* < 300 GeV,
- $M_{miss} > 250 \text{ GeV}/c^2$,
- No particle with momentum above 180 GeV/c in the event.

$\gamma\gamma$ suppression


 $\Delta(M) = 10.2 \text{ GeV}/c^2 \rightarrow \gamma \gamma \text{ background } \dots$

- Correlated cut in ρ and θ_{acop} : $\rho > 2.7 \sin \theta_{acop} + 1.8$.
- no significant activity in the BeamCal
- φ_{p miss} not in the direction of the incoming beam-pipe.

Finding τ :s

In particular in the presence of beam-background, general jet-finders perform poorly when used to find τ :s Use the DELPHI τ -finder: Performs better than Durham forced to two jets already without background:

BLUE: Durham, RED: DELPHI

Mikael Berggren (DESY)

ILC beam-parameters and the $\tilde{\tau}$ channel in SI

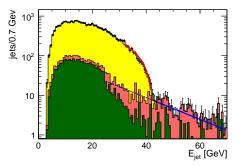
End-point and cross-section

Additional cuts against $\gamma\gamma$

- $|\cos \theta_{missing momentum}| < 0.8$
- Low fraction of "Rest-of-Event" energy at low angles.
- Good agreement p_{track} E_{calo}

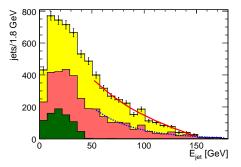
From now on: Different cuts for $\tilde{\tau}_1$ ($\gamma\gamma$ background), and $\tilde{\tau}_2$ (*WW* background).

- *E_{vis}* < 120 GeV,
- $|\cos \theta_{jet}| < 0.9$ for both jets,
- $heta_{acop} > 85^{\circ}$,
- (*E_{jet1}* + *E_{jet2}*) sin θ_{acop} < 30 GeV.
- $M_{vis} > 20 \text{ GeV}/c^2$.


- $E_{vis} > 50 \text{ GeV}.$
- $\theta_{acop} < 155^{\circ}$.
- Other side jet not e or μ
- Most energetic jet not e or μ
- Cut on Signal-SM LR of f(q_{jet1} cosθ_{jet1},q_{jet2} cosθ_{jet2})

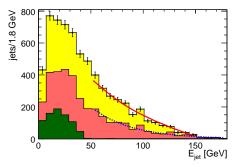
Fitting the $\tilde{\tau}$ mass: Endpoint

- Only the upper end-point is relevant.
- Background subtraction:
 - *τ˜*₁: Important SUSY background,but region above 45 GeV is signal free. Fit exponential and extrapolate.
 - *τ˜*₂: ~ no SUSY background above 45 GeV. Take background from SM-only simulation and fit exponential.
- Fit line to (data-background fit).


Fitting the $\tilde{\tau}$ mass: Endpoint

- Only the upper end-point is relevant.
- Background subtraction:
 - *τ˜*₁: Important SUSY
 background,but region
 above 45 GeV is signal free.
 Fit exponential and
 extrapolate.
 - *τ˜*₂: ~ no SUSY background above 45 GeV. Take background from SM-only simulation and fit exponential.
- Fit line to (data-background fit).

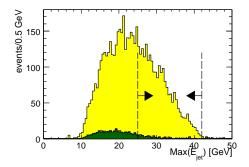
Fitting the $\tilde{\tau}$ mass: Endpoint


- Only the upper end-point is relevant.
- Background subtraction:
 - *τ˜*₁: Important SUSY
 background,but region
 above 45 GeV is signal free.
 Fit exponential and
 extrapolate.
- Fit line to (data-background fit).

▲ 同 ▶ → 三 ▶

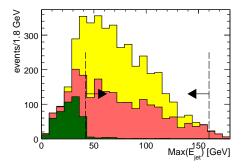
Fitting the $\tilde{\tau}$ mass: Endpoint

- Only the upper end-point is relevant.
- Background subtraction:
 - *˜*₁: Important SUSY background,but region above 45 GeV is signal free. Fit exponential and extrapolate.
 - [˜]₂: ~ no SUSY background above 45 GeV. Take background from SM-only simulation and fit exponential.
- Fit line to (data-background fit).


Fitting the $\tilde{\tau}$ mass: Cross-section

- Poorly known SUSY background is most important contribution to uncertainty.
- Select region where is is as low as possible.

< ロ > < 同 > < 回 > < 回 >


Fitting the $\tilde{\tau}$ mass: Cross-section

- Poorly known SUSY background is most important contribution to uncertainty.
- Select region where is is as low as possible.

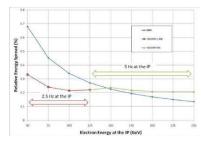
Fitting the $\tilde{\tau}$ mass: Cross-section

- Poorly known SUSY background is most important contribution to uncertainty.
- Select region where is is as low as possible.

Main items for physics • Half RF power:

- - The free parameter is N_{bunch}. Fringe benefit: Allows for smaller damping rings
 - To keep L: decrease beam-size.
 - But: . \rightarrow increases δ_{BS}
 - Doubled luminosity/BX → doubled probability for a $\gamma\gamma$ event in the same BX.

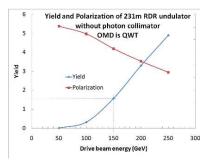
Main items for physics • Half RF power:


- - The free parameter is N_{bunch}. Fringe benefit: Allows for smaller damping rings
 - To keep L: decrease beam-size.
 - But: . \rightarrow increases δ_{BS}
 - Doubled luminosity/BX → doubled probability for a $\gamma\gamma$ event in the same BX.

Undolator move :

- Higher energy-spread at 500 GeV.
- Lower positron polarisation at 500
- Also: Lower lumi below 250 GeV.

RDR , SB2009 and $\tilde{\tau}\mbox{:s}$


- Main items for physics • Half RF power:
 - The free parameter is *N*_{bunch}. Fringe benefit: Allows for smaller damping rings
 - To keep L: decrease beam-size.
 - But: . \rightarrow increases δ_{BS}
 - Doubled luminosity/BX \rightarrow doubled probability for a $\gamma\gamma$ event *in the same BX*.
 - Undolator move :
 - Higher energy-spread at 500 GeV.
 - Lower positron polarisation at 500 GeV.
 - Also: Lower lumi below 250 GeV, not relevant here.

RDR , SB2009 and $\tilde{\tau}\text{:s}$

Main items for physics • Half RF power:

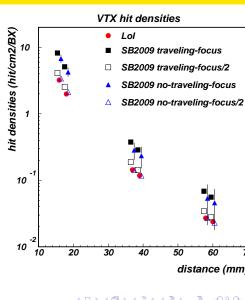
- The free parameter is *N*_{bunch}. Fringe benefit: Allows for smaller damping rings
- To keep *L*: decrease beam-size.
- But: . \rightarrow increases δ_{BS}
- Doubled luminosity/BX \rightarrow doubled probability for a $\gamma\gamma$ event *in the same BX*.
- Undolator move :
 - Higher energy-spread at 500 GeV.
 - Lower positron polarisation at 500 GeV.
 - Also: Lower lumi below 250 GeV, not relevant here.

- Main items for physics • Half RF power:
 - The free parameter is *N*_{bunch}. Fringe benefit: Allows for smaller damping rings
 - To keep L: decrease beam-size.
 - But: . \rightarrow increases δ_{BS}
 - Doubled luminosity/BX → doubled probability for a γγ event in the same BX.
 - Undolator move :
 - Higher energy-spread at 500 GeV.
 - Lower positron polarisation at 500 GeV.
 - Also: Lower lumi below 250 GeV, not relevant here.

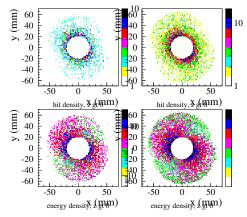
Specifically:

- Twice as much beam-strahlung:
 - more overlayed tracks (real or fake)
 - Twice as much energy in BeamCal
- Total luminosity unchanged RDR→SB2009 w TF, but reduced by %25 for SB2009 w/o TF.
- *P*(*e*⁺) goes from 33 % to 22 %.
- Incoming energy-spread grows from 0.16 to 0.21 %.
- Luminosity within 1 % of nominal reduced from 0.83 to 0.72.

・ ロ ト ・ 同 ト ・ 目 ト ・ 目 ト

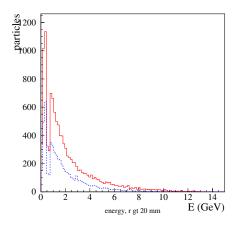

Potential effects on the $\tilde{\tau}$ -channels:

- Total luminosity decrease for SB2009 w/o TF.
- Decrease of P(e⁺): More background, less-signal for τ̃₁.
- Incoming energy-spread grows: end-point blurred.
- Luminosity within 1 % of nominal reduced: lower signal.
- Twice as much beam-strahlung:
 - more overlayed tracks (real or fake): Destroys τ topology.
 - Twice as much energy in BeamCal: More $\gamma\gamma$.
- Higher probability for a γγ event in the same BX as the physics event (this effect has not yet been studied).

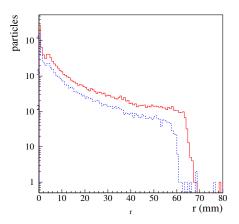

RDR , SB2009 and $\tilde{\tau} {:} {\rm s}$

Beam-strahlung: Hits in Vertex detector

- Full simulation (Mokka), with crossing-angle and anti-DID field.
- No reconstruction yet, just count hits.
- The ILD VTX integrates of a certain time-window → Many BX:es overlayed.

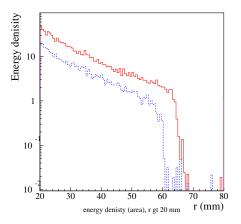


- Only GP, but with crossing-angle and anti-DID.
- Both hit-densities (top) and energy-density (bottom) matters.
- The issue: can one still see a \approx 250 GeV electron from a $\gamma\gamma$ process over the pairs-background?



A D b 4 A b

- Distribution of particle energy for r > 20 mm.
- Total energy in BeamCal per BX: 24 TeV for SB2009TF, 10 TeV for RDR nom.
- Number of particles per BX 11500 for SB2009TF,5400 for RDR nom.
- Energy density vs Radius. SB2009TF has about twice at any given radius, and extends 5 mm further.
- All the relevant numbers double



- Distribution of particle energy for r > 20 mm.
- Total energy in BeamCal per BX: 24 TeV for SB2009TF, 10 TeV for RDR nom.
- Number of particles per BX 11500 for SB2009TF,5400 for RDR nom.
- Energy density vs Radius. SB2009TF has about twice at any given radius, and extends 5 mm further.
- All the relevant numbers double

< 6 b

- Distribution of particle energy for r > 20 mm.
- Total energy in BeamCal per BX: 24 TeV for SB2009TF, 10 TeV for RDR nom.
- Number of particles per BX 11500 for SB2009TF,5400 for RDR nom.
- Energy density vs Radius. SB2009TF has about twice at any given radius, and extends 5 mm further.
- All the relevant numbers double

- Distribution of particle energy for r > 20 mm.
- Total energy in BeamCal per BX: 24 TeV for SB2009TF, 10 TeV for RDR nom.
- Number of particles per BX 11500 for SB2009TF,5400 for RDR nom.
- Energy density vs Radius. SB2009TF has about twice at any given radius, and extends 5 mm further.
- All the relevant numbers double

< 回 > < 三 > < 三 >

Beam-background

- Generate 1000 bunch-crossings with GuineaPig.
- Reconstruct these with full ILD reconstruction.
- Add simulated and reconstructed beam-background only events on beam-background free, fully simulated and reconstructed physics events → under-estimate pattern rec. problems.

$\text{RDR} \rightarrow \text{SB2009 procedure}$

- BeamCal: From our studies: SB2009(TF) ≈ SB2009(noTF) ≈ 2 × RDR. → Multiply BeamCal Energy-density map(RDR) by 2. Use same function p([E_eatx, y], [pairsenergydensityatx, y]) as the probability to detect an electron of energy E entering the BeamCal at (x,y) would be seen.
- Tracking Fully simulated and reconstructed BX:es available both for RDR and SB2009 (no TF). Use method outlined above. NB: optimistic when applied to SB2009 with TF !
- Beam-spectrum Lumi distributions from GP (A. Hartin, T Barklow) for RDR and SB2009 and *E*_{beam1,2} used to calculate even-by-event weights, to modify the existing fully simulated sample to an RDR one.
- Polarisation: Straight-forward relative weighting of generated samples with P=(-1,1) and P=(1,-1).

$\text{RDR} \rightarrow \text{SB2009 procedure}$

- BeamCal: From our studies: SB2009(TF) ≈ SB2009(noTF) ≈ 2 × RDR. → Multiply BeamCal Energy-density map(RDR) by 2. Use same function p([*E_eatx*, y], [*pairsenergydensityatx*, y]) as the probability to detect an electron of energy E entering the BeamCal at (x,y) would be seen.
- Tracking Fully simulated and reconstructed BX:es available both for RDR and SB2009 (no TF). Use method outlined above. NB: optimistic when applied to SB2009 with TF !
- Beam-spectrum Lumi distributions from GP (A. Hartin, T Barklow) for RDR and SB2009 and *E*_{beam1,2} used to calculate even-by-event weights, to modify the existing fully simulated sample to an RDR one.
- Polarisation: Straight-forward relative weighting of generated samples with P=(-1,1) and P=(1,-1).

$\text{RDR} \rightarrow \text{SB2009 procedure}$

- BeamCal: From our studies: SB2009(TF) ≈ SB2009(noTF) ≈ 2 × RDR. → Multiply BeamCal Energy-density map(RDR) by 2. Use same function p([E_eatx, y], [pairsenergydensityatx, y]) as the probability to detect an electron of energy E entering the BeamCal at (x,y) would be seen.
- Tracking Fully simulated and reconstructed BX:es available both for RDR and SB2009 (no TF). Use method outlined above. NB: optimistic when applied to SB2009 with TF !
- Beam-spectrum Lumi distributions from GP (A. Hartin, T Barklow) for RDR and SB2009 and *E*_{beam1,2} used to calculate even-by-event weights, to modify the existing fully simulated sample to an RDR one.

 Polarisation: Straight-forward relative weighting of generated samples with P=(-1,1) and P=(1,-1).

March 28, 2010 19 / 22

$\text{RDR} \rightarrow \text{SB2009 procedure}$

- BeamCal: From our studies: SB2009(TF) ≈ SB2009(noTF) ≈ 2 × RDR. → Multiply BeamCal Energy-density map(RDR) by 2. Use same function p([E_eatx, y], [pairsenergydensityatx, y]) as the probability to detect an electron of energy E entering the BeamCal at (x,y) would be seen.
- Tracking Fully simulated and reconstructed BX:es available both for RDR and SB2009 (no TF). Use method outlined above. NB: optimistic when applied to SB2009 with TF !
- Beam-spectrum Lumi distributions from GP (A. Hartin, T Barklow) for RDR and SB2009 and *E*_{beam1,2} used to calculate even-by-event weights, to modify the existing fully simulated sample to an RDR one.
- Polarisation: Straight-forward relative weighting of generated samples with P=(-1,1) and P=(1,-1).

RDR , SB2009 and $\tilde{\tau}$:s: Signal and background

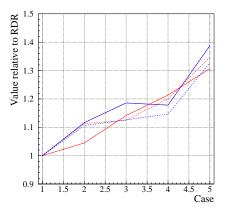
Events after cuts, end-point analysis

case		$ ilde{ au}_1$			$ ilde{ au}_2$		
	SM	SUSY	signal	SM	SUSY	signal	
RDR	317	998	10466	1518	241	1983	
SB09(TF)	814	956	8410	1346	223	1555	
SB09(nTF)	611	717	6308	1009	167	1166	

Events after cuts, cross-section analysis

case		$ ilde{ au}_1$			$ ilde{ au}_2$		
	SM	SUSY	signal	SM	SUSY	signal	
RDR	17.6	47.7	2377	1362	33.7	1775	
SB09(TF)	17.6	45.7	1784	1194	32.4	1366	
SB09(nTF)	13.2	34.3	1337	895	24.3	1025	

< ロ > < 同 > < 回 > < 回 >


RDR , SB2009 and $\tilde{\tau}$:s: Effect on end-results

Errors on end-point (GeV)

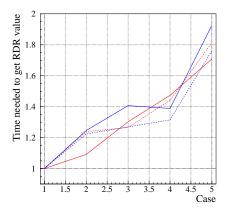
case	#	$ ilde{ au}_1$	$ ilde{ au}_2$
RDR	1	0.129	1.83
+SB bck	2	0.144	2.02
+SB ppol	3	0.153	2.06
+SB spect	4	0.152	2.10
+SB noTF	5	0.179	2.42

Errors on cross-section (%)

case	#	$\tilde{\tau}_1$	$\tilde{\tau}_2$
RDR	1	2.90	4.24
+SB bck	2	3.03	4.72
+SB ppol	3	3.31	4.77
+SB spect	4	3.52	5.09
+SB noTF	5	3.79	5.71

Red: cross-section, Blue: end-point, Solid : $\tilde{\tau}_1$, Dashed: $\tilde{\tau}_2$.

A B F A B F


RDR , SB2009 and $\tilde{\tau}$:s: Effect on end-results

Errors on end-point (GeV)

case	#	$\tilde{\tau}_1$	$ ilde{ au}_2$
RDR	1	0.129	1.83
+SB bck	2	0.144	2.02
+SB ppol	3	0.153	2.06
+SB spect	4	0.152	2.10
+SB noTF	5	0.179	2.42

Errors on cross-section (%)

case	#	$ ilde{ au}_1$	$\tilde{\tau}_2$
RDR	1	2.90	4.24
+SB bck	2	3.03	4.72
+SB ppol	3	3.31	4.77
+SB spect	4	3.52	5.09
+SB noTF	5	3.79	5.71

Red: cross-section, Blue: end-point, Solid : $\tilde{\tau}_1$, Dashed: $\tilde{\tau}_2$.

A B F A B F

Conclusions

Conclusions

- The effect of the transition RDR \rightarrow SB2009 of the $\tilde{\tau}$ channels in SPS1a' was studied.
 - Less favourable beam spectrum and positron polarisation treated by re-weighting the existing samples with RDR parameters.
 - Increased pairs-background in BeamCal treated by scaling up the RDR energy densities.
 - New GP-generated pairs were fully simulated and reconstructed, and over-layed on the physics events (background and signal).
- 15-20 % degradation both on end-point and cross-section determination, both for τ₁ and τ₂. Increases to 20-30 % if TF scheme would turn out not to be feasible.
- Corresponds to increasing the in running time by 40 % (80 % for noTF) to achieve the same results.
- Half of degradation from the modifications of the positron source: Wider incoming beam-spectrum and lower positron polarisation.