

A Large TPC Prototype for an ILC Detector

G. De Lentdecker Université Libre de Bruxelles, Brussels, Belgium On behalf of the LCTPC Collaboration

29/10/2009

IEEE/NSS 2009

1

- Introduction
 - Linear Colliders, Detectors
- The Large Prototype TPC
- Beam test setup in Desy
- 3 detector technologies
 - Test-beam results
- Laser Calibration setup
- Conclusions and future plans

Future e⁺e⁻ Linear Colliders İİL A future e⁺e⁻ linear collider will be needed to study in details the LHC discoveries

International Linear Collider (ILC):

 Technology not available before 2015

29/10/2009

=> ILC remains the baseline

IEEE/NSS 2

326 klystrons

drive beam accelerato

2.37 GeV, 1.0 GHz

decelerator, 24 sectors of 868

e⁺ main linad

Drive Beam

Generation Complex

Main Beam

Generation Complex

combiner rings

delay loop 80.3 m CR1 160.6 m CR2 481.8 m

CR2

booster linac,

9 GeV, 2 GHz

e⁺ DR

e⁻ DR 365m

e+ injector,

2.4 GeV

CR2

CLIC overall layout

3 TeV

e- injector

2.4 GeV

33 MW, 139 µs

- Concept based on particle flow
 - -> large tracker and high granularity calorimeters inside high (3.5T) magnetic field:
 - Si vertex detector
 - Large TPC (L=4.3m, Ø=3.6m)
 - 200 hits/track
 - δ1/pt ~ 9 10⁻⁵ /GeV/c
 - σ (rφ) < 100 μm
 - Rad length: 0.04X₀-0.15X₀
 - dE/dx resol ~ 5%
 - Si envelope (in- and outside)
 - Precise calo impact
 - Calo

 $\sigma_{E_{\rm em}}/E_{\rm em} \simeq 15\%/\sqrt{E({\rm GeV})} \oplus 1\%$ $\sigma_{E_{\rm int}}/E_{\rm jet} \simeq 30\%/\sqrt{E({\rm GeV})}$

29/10/2009

 Micro Pattern Gas Detector (MPGD) instead of MWPC for the electron amplification stage: Not limited by the ExB effects

Large Prototype TPC (LPTPC)

2009

6

- Dimensions:
 - Length = 61cm
 - Diam = 77cm
- Endplate :
 - Aluminium
 - Can accommodate 7 detectors/dummy modules
 - GEM and Mmegas modules have same shape -> interchangeable

Multi-GEM

Micromegas

29/10/2009

DESY set-up

- LPTPC is only half of the LCTPC
- Slided in a superconductor solenoid of up to 1.5 T
- 1 -</sup>

İİĻ

29/10/2009

LPTPC equipped with MICROMEGAS

- 3 bulk mMEGAS module tested
 - Regular anodes

ic

- Resistive anodes (carbon loaded kapton) with a resistivity ~ 5-6 MΩ/□
- Resistive anodes (resistive ink) with a resistivity ~ 1-2 M Ω / \Box
- 1726 (24x72) pads of ~3x7 mm²

- AFTER-based electronics (72 ch./chip):
 - low-noise (700 e-) pre-amplifier-shaper
 - 100 ns to 2 µs tunable peaking time
 - full wave sampling by SCA

<u>5 GeV e⁻, B=1T</u>

- Pad response:
- Fraction of row charge on a pad
 - vs. x_{pad} x_{track} normalized to central pad charge

- Clear charge spreading over 2-3 pads
 - (500 ns shaping)

- Spatial Resolution:
- At z=0, σ_0 =54.8±1.6µm (~ wpad/55)
- Effective number of electrons N_{eff}=31.8±1.4 consistent with expectation

Double GEM set-up

Double GEM Resolution

At z = 0, $\sigma \circ$ = 93.8 ± 33.9 µm

İİĹ

At z = 0, $\sigma \circ$ = 31.7 ± 9.3 µm

3-GEM Structure & TimePix

3-GEM + CMOS pixel readout

29/10/2009

ilr

Largest amount of readout channels on one anode for a TPC so far: # ch \cong 500 k

29/10/2009

IEEE/NSS 2009

17

Laser Calibration Setup

29/10/2009

ilc

- A large prototype TPC has been built which allowed to address
 - Assembling
 - Commissioning
- LPTPC tested with several MPGD and electronics technologies
 - MICROMEGAS, GEM
 - AFTER, ALTRO, CMOS Pixel
- Several beam tests have been performed with 5GeV e⁻ & B=1T
- The analyses of all these data are ongoing and preliminary results look promising
- Future plans:
 - Combined test with MICROMEGAS and Si Envelope (Nov 2009)
 - Large scale test with 7 modules (~10 k channels) and more integrated electronics (spring 2010)

Acknowledgments

Detector R&D towards the International Linear Collider

Back-up slides

TPC Performance

Size	$\phi = 3.6 \text{m}, \text{L} = 4.3 \text{m}$ outside dimensions
Momentum resolution $(3.5T)$	$\delta(1/p_t)\sim 9\times 10^{-5}/{\rm GeV/c}$ TPC only (\times 0.4 if IP incl.)
Momentum resolution $(3.5T)$	$\delta(1/p_t) \sim 2 \times 10^{-5}/\text{GeV/c} \text{ (SET+TPC+SIT+VTX)}$
Solid angle coverage	Up to $\cos\theta \simeq 0.98$ (10 pad rows)
TPC material budget	$\sim 0.04 X_0$ to outer fieldcage in r
	$\sim 0.15 \mathrm{X}_{\mathrm{0}}$ for readout endcaps in z
Number of pads/timebuckets	$\sim 1{\times}10^6/1000~{\rm per}$ endcap
Pad size/no.padrows	\sim 1mm ×4–6mm/~200 (standard readout)
σ_{point} in $r\phi$	$<100\mu\mathrm{m}$ (average over $\mathrm{L}_{sensitive},$ modulo track ϕ angle)
σ_{point} in rz	$\sim 0.5~{\rm mm}~({\rm modulo~track}~\theta$ angle)
2-hit resolution in $r\phi$	$\sim 2 \ {\rm mm} \ ({\rm modulo} \ {\rm track} \ {\rm angles})$
2-hit resolution in rz	$\sim 6~{\rm mm}~({\rm modulo~track~angles})$
dE/dx resolution	$\sim 5 \%$
Performance	> 97% efficiency for TPC only (p _t > 1GeV/c), and
	$> 99\%$ all tracking (p _t $> 1 \mathrm{GeV/c})$ [82]
Background robustness	Full efficiency with 1% occupancy,
	simulated for example in Fig. $4.3-4$ (right)
Background safety factor	Chamber will be prepared for 10 \times worse backgrounds
	at the linear collider start-up

LP-TPC Endplate

29/10/2009

High field created by Gas Gain Grids Most popular: GEM and Micromegas

Use 'naked' CMOS pixel readout chip as anode

J. Timmermans NIKHEF

ic

Readout Electronics: AFTER

AFTER Main Features

29/10/2009

ic

