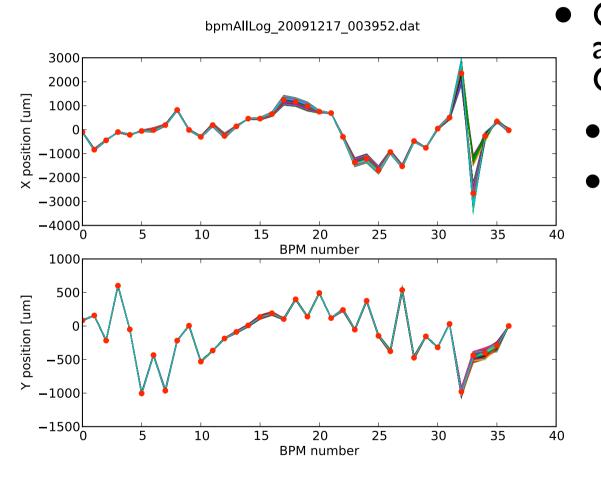
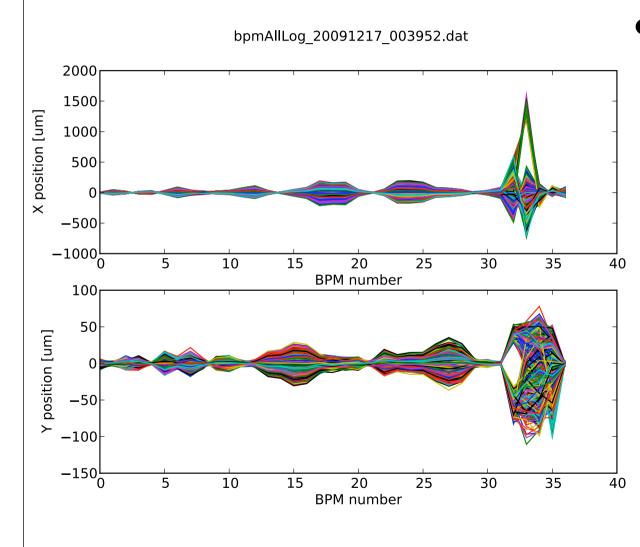
ATF2 Cavity BPMs

A. Aryshev, S. T. Boogert (JAI@RHUL), G. Boorman, A. Heo, Y. Honda, J.Y. Huang, S.J. Hwang, N. Joshi, J.Y. Kim, Y. Kim, A. Lyapin, D. McCormick, S. Molloy, J. Nelson, Y.J. Park, S.J. Park, C. Swinson, T. Tauchi, N. Terunuma, G. White. ATF Operation meeting I 7th December 2009 SLAC, KNU, PAL, KEK, JAI-RHUL, UCL KEK, ATF https://www.pp.rhul.ac.uk/twiki/bin/view/JAI/ BeamPosition

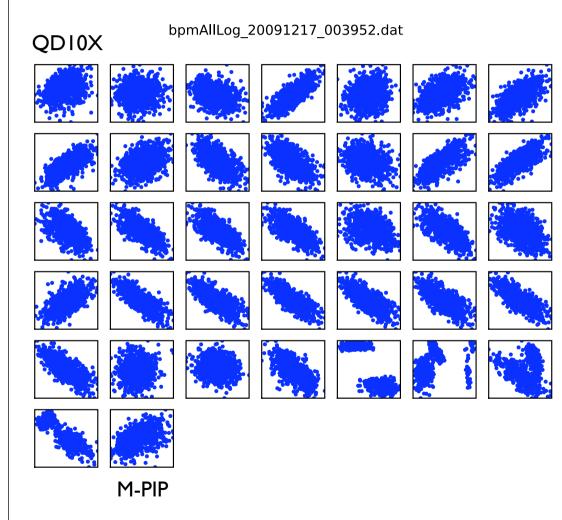

System status

- C-band excellent
 - Good phase stability
 - Amplitude stability ~few %
 - Resolution order I
- S-band system
 - IQ rotation (phase) instability
 - Not present in calibration tone ~48 hours
 - Becomes bistable with DR-RF ramp (can we try to avoid using DR-RF ramp for dispersion)
 - Code "fixed" but still problems
- Talk focus on new results in last 2 shifts

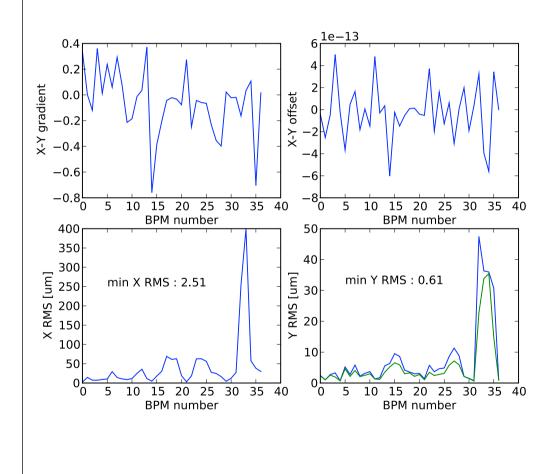
Introduction


- Resolution studies
 - All BPMs 20 dB attenuators (apart from ...)
 - MFB2FF and MQMI6FF full resolution (no attenuators)
 - Chosen because magnets nominally off, can centre beam in BPM (both x and y) without disturbing optics
- Full system analysis (one file 1000 pulses all BPMs)
 - Orbit reconstruction
 - X-Y coupling
 - QMI6FF and MFB2FF resolution
 - Jitter correction

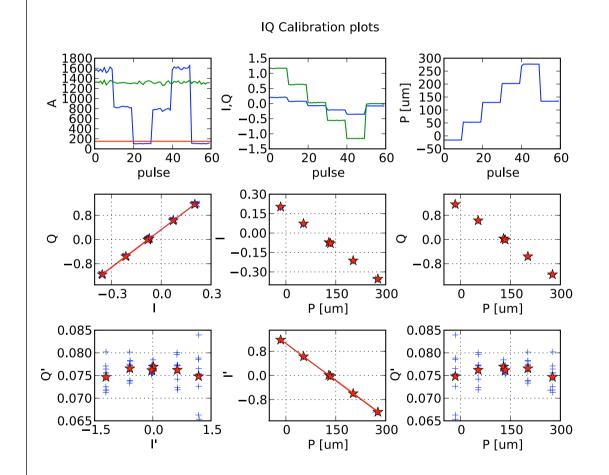
Reference orbit


- Cut on reference amplitude and QDI0Xx position
 - Bad extracts
 - Low charge

Jitter in cavity BPMs


- Subtract reference orbit
 - S-Band BPMs clearly have some problem
 - Clear betafunction dependence on jitter
 - Typically y
 jitter less 50
 µm

X-Y correlation/coupling


- X-Y correlation for each BPM
 - Scales suppressed but appears too large to be mechanical roll
 - X-Y Coupling
 - Need to remove to compute resolution
 - S-band bistable although beam appears stable

X-Y coupling subtracted

- Top plots are gradient and offset for the X-Y correlation can be large (-0.8)
- Lowest RMS vertical position jitter 0.61

FM2 & QMI6 calibration

 Centre BPM on beam, don't have to worry about quad centre

- Quality of calibration is excellent
- Perfect for studies of BPM sensitivity

Towards high resolution

- Relationship between BPM EM centre and magnet
 - Determine signal levels for normal quadrupoles well centred on beam (BBA)
 - Can system tolerate this?
- Need to understand BBA offsets compared with high resolution dynamic range
- Require
 - Might always be difficult horizontally as beam jumps out of unstaturated dynamic range
 - Vertically probably o.k, what about the sextupoles? Large BBA offset
 - SF6FF {x,y} = {2750, 604}
 - SF5FF {x,y} = {2325, -205}

Towards high stability

- Need to inject calibration tone all the time
 - Presently signal level too low
 - D. McCormick planning upgrade to fix minor problem with SLAC electronics
- Decision to inject all pulses with calibration tone
 - Mix latter part of waveform with calibration tone frequency
 - Extract scaling per pulse
 - Apply to amplitude/phase for each digitized waveform
- Complex code upgrade will be run parallel to existing system
 - Allows maximum time to test and debug (freeze existing operational version)

Towards stable S-band

- KNU (A. Heo, Y. Kim) students to stay until end Feb 2010
 - Short shifts measurements to calibrate S-band system
 - Develop new data logger to constantly and carefully monitor S-band system
 - Experiments with calibration tone
 - Careful review of existing calibration data to determine source of problem
- Address during January operation
 - Will need short shifts combined with C-band calibration (checks say 5 BPMs)

Summary

- BPM system progress is now quite rapid
 - Gain stability measurements essential for BBA and long term and turn key operation
 - Lots of work to do on BPM system output
- Resolution dominated by beam jitter
 - Matrix inversion/SVD techniques to fix this
 - Apply to
 - Resolution studies
 - Also calibration
- Another trip required for
 - Hardware upgrades to S-band system
 - More system check out