HCAL and **PFA** at **MIT**

Peter Fisher Ray Cowan

SiD PFA Meeting October 15, 2009

Plans and goals

- Short tem: revisit SiD global parameters
 - **♦** Especially those relating to calorimetry
 - ♦ Follow up Marcel's "SiDish" study
 - Used in preparing the SiD LOI
 - Many parameters studied
 - ♦ Keep in mind physics performance vs. cost as well as jet energy resolution vs. global parameters
- Longer term: contribute to PFA development
 - ♦ Provide additional effort on existing SiD PFAs
 - ♦ And/or investigate PandoraPFA
 - What would be needed to run a Pandora-like PFA in org.lcsim?
 - Identify the important differences between SiD PFAs and PandoraPFA
- Feedback is welcome
 - What should be the highest priorities?

Where SiDish studies got us

- Explored a considerable region of detector parameter space
 - ♦ B-field (4T, 5T (sid02), 6T)
 - **♦** ECAL inner radius (1.0 m, 1.25 m (sid02), 1.5 m)
 - **♦ ECAL inner Z (length of SiD) (1.5 m, 1.7 m (sid02), 1.9 m, 2.1 m)**
 - **♦** HCAL depth (3.5 5.5 lambda)
 - **♦** HCAL longitudinal segmentation (30 60 layers)
 - ◆ Documented in Marcel Stanitzki's talk and paper
 - "Detector Optimization for SiD"
 - http://ilcagenda.linearcollider.org/contributionDisplay.py?contribld=14
 7&sessionId=23&confld=2628
 - arXiv:0902.3205
- Used qqbar events
 - ♦ at 91 and 200 GeV CMS
 - \bullet $|\cos(\theta)| < 0.7$
 - **♦** Also studied forward endcap region using *u*-jets
- Provided essential input for the Lol

Resources and running at MIT

- Scripts set up at MIT for easy job submission and book-keeping
- Given stdhep and compact.xml files
 - ♦ Run GeomConverter and SLIC
 - ♦ Calibrate each detector variant using Ron Cassell's and IowaPFA script
 - Use LCDetectors/detectors/sid02/ calibration files as starting point
 - Sampling fractions
 - Use qqbar at all energies of interest (100 to 1000 GeV)
 - Use QSFCalibrationFromData.java
 - Save AIDA file for inspection
 - Save last set of SF values printed in log files
 - Replace values in ./SamplingFractions/{EM,HAD}{Barrel,Endcap}.properties files
 - Photon and neutral hadron calibration
 - Use ZZnunubaruds events at 500 GeV
 - Use QuickCalibrationFromData.java
 - Save photon and nh values printed in log file
 - Replace values in ./{photon,hadron}Calibration/{photon,nh}Qcal-v2r3p10.properties files
 - PFA calibration
 - Use ZZnunubaruds events at 500 GeV
 - Run Iowa PFA calibration script (likelihood.sh)
 - Produces a binary likelihood.bin file
 - o Place this file in the ./structuralPFA/ calibration directory
 - Assume we can use existing sid02 LongitudinalHmatrix.hmx file
 - What sorts of detector variations will require a new version?
 - o Major ECAL changes, presumably
 - Run reconstruction/PFA
 - Determine jet energy resolution, other numbers

l'llit

Resources at SLAC

A number of existing detector variants already exist at SLAC

Detector info

Leverage these where appropriate, noting simulation and recon versions

s_127_S_rpc_dig: qq200:PPR

- . Some variants may benefit from re-running simulation and/or recon/PFA with current org.lcsim code
- ♦ Ron's summary file lists many of these: /nfs/slac/g/lcd/mc/prj/users/cassell/Summary.table

Anal

Data

```
2.65:
                                                                                 26.5: -2.17:
                                                  : 7275: -2.94: 3.84:
                                                                          2.76:
                                                                                 27.6: -2.96: 3.87:
                                             :MatPFA: 7275: 195.14:
                                                                                 47.8: -4.98: 6.66: 3.42
                                                                    6.6:
                                                                          4.78:
                                                                                 55.2: -1.76: 7.85:
                                                           -1.59:
                                                                   7.74:
                                                                          5.52:
                                             :PPRGen: 7275:
                                                             -0.7: 2.68: 1.91: 19.1: -0.71: 2.68: 1.35
E.g., sid01
                                                   : 5506: -1.63: 5.81: 1.65:
                                                                                26.0: -1.67: 5.83: 1.17
                                             :DT>2 : 5506: -6.52: 20.25:
                                                                           5.8: 91.8: -6.52: 20.43: 4.14
                                                             -7.3: 20.36:
                                                                          5.84:
                                                                                92.4: -7.33: 20.57:
                                             :MatPFA: 6582: 486.76: 21.18:
                                                                          6.15: 97.3:-13.36: 21.39:
                                             :FastMC: 7332:
                                                             -8.6: 26.36: 7.59: 119.9: -9.5: 27.84: 5.68
                                                           -1.78: 5.76: 1.64: 25.9: -1.8:
```

:qq1000:PPR

Produce same numbers for variants under study

```
:PPRGen: 7246: -11.86: 18.38:
                                   2.63: 58.8:-12.06: 18.77:
: ZZ500:PPR
             : 2639:
                    -0.29:
                              3.2: 1.97:
                                          21.2: 0.08: 2.33: 2.55
      :DT>2 : 2639:
                    -2.19:
                              6.1: 3.78:
                                          40.6: -0.86:
      :DT>5 : 2639: -2.89: 6.18: 3.85: 41.3: -1.34: 2.97:
      :MatPFA: 2639: 223.12: 28.32: 17.95: 192.5: -1.89:
      :FastMC: 2639:
                     -2.33: 10.16: 6.31: 67.7: -1.28: 4.67:
      :PPRGen: 2639: -0.38: 3.14: 1.93: 20.7: -0.66: 1.81:
```

: 7246: -11.86: 18.41: 2.63: 58.9:-12.06: 18.8:

:DT>2 : 7246: -19.38: 51.57: 7.44: 166.3:-19.17: 52.44: 5.35

:DT>5 : 7246: -20.28: 51.65: 7.46: 166.7:-20.08: 52.53: :FastMC: 7246: -24.82: 59.46: 8.62: 192.8:-27.19: 63.86:

#evts Emean90 Erms90 jEres% alpha% Mmea90 Mrms90 dM/M %

: 7275: -0.72: 2.77: 1.96: 19.6: -0.74: 2.77: 1.39

What we're working on

- Revisit HCAL parameter studies in SiD framework
 - **♦ Extend to higher energies (500 and 1000 GeV)**
 - ◆ Determine alpha vs. energy for each variant
 - ♦ Check for any differences with SiDish
 - **♦** Changes include

```
• Simulation: Mokka \rightarrow SLIC
```

• Reconstruction: Marlin → org.lcsim

• PFA: PandoraPFA \rightarrow Iowa PFA

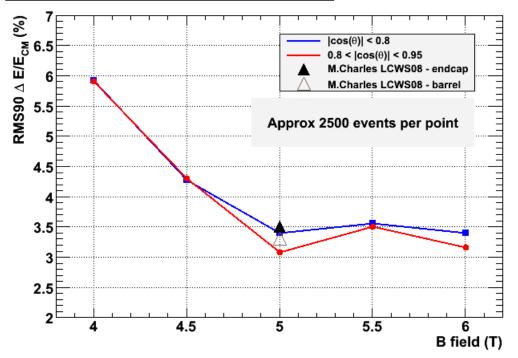
• Tracking: TPC \rightarrow All silicon

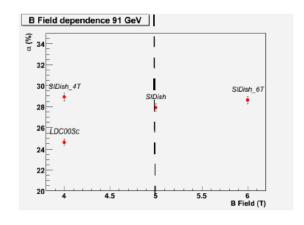
ullet Track cheaters o real tracking

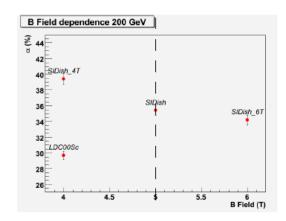
HCAL readout Scint/analog → RPC/digital

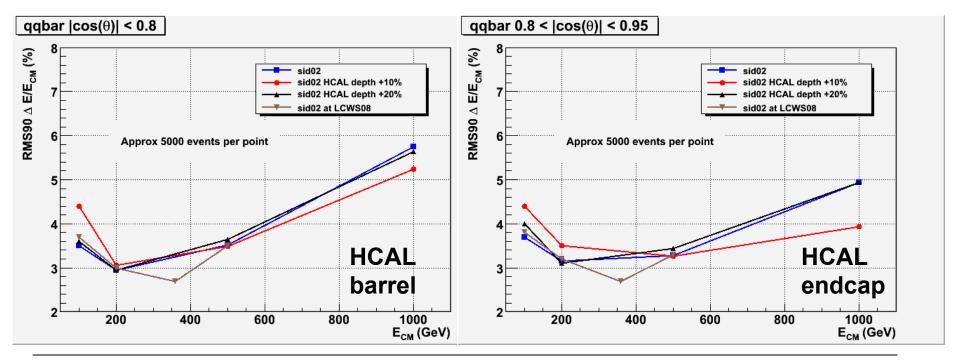
• HCAL segm. $3x3 \text{ cm} \rightarrow 1x1 \text{ cm}$

- Study single particles too
 - Check linearity and resolution for gammas, n's, KL's
 - Similar to Norm Graf's studies in sid02 scint
 - o http://ilcagenda.linearcollider.org/materialDisplay.py?contribId=1&materialId=slides&confld=3378

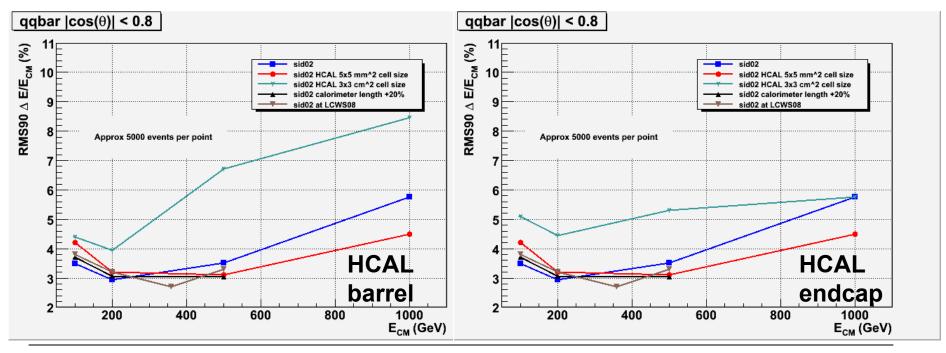

Sid02 variants presently under study


- Length "stretched" by +10%, +20%
 - ♦ ECAL inner_z
 - **♦** Affects ECAL and systems outside it
 - No changes in tracker
- HCAL depth increased by +10%, +20%
 - ◆ 40 layers → 44, 48 layers
 - Same layer structure
- B-field
 - ♦ 4, 4.5, 5, 5.5, 6 T
- HCAL cell size
 - ♦ 5x5 mm², 1x1 cm², 3x3 cm²
- More to come


B-field variants


Marcel's "sidish" B-field study at 91 (above) and 200 GeV (below)

HCAL depth variants


Studied +10% and +20% in HCAL depth

Retain sid02 cell size and layer structure

Three more variants

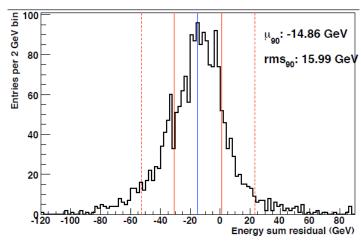
- Cell size
 - ♦ 5x5 mm², 3x3 cm²
- Length increase
 - ♦ ECAL inner_z +20%

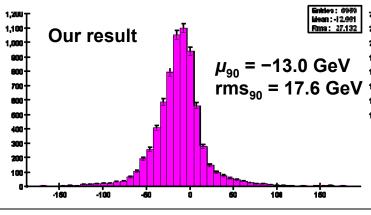
October 15, 2009

Energy residuals comparison

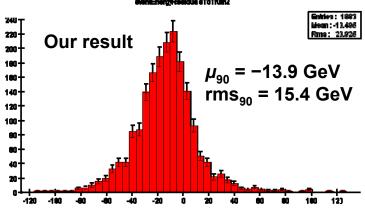
Doublecheck our simulation & recon

Compare our sid02 running against "official" sid02 results from LCWS08


50

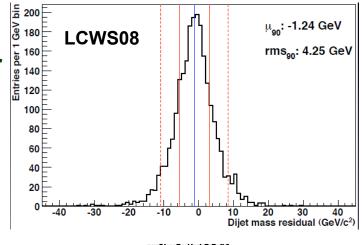

Energy sum residuals at 500 GeV qqbar

Barrel region

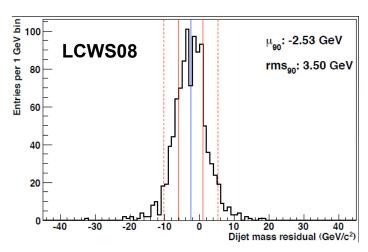


Endcap region

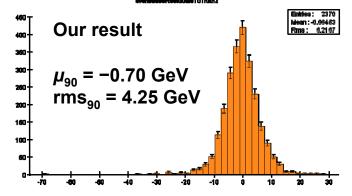
Energy sum residual (GeV)

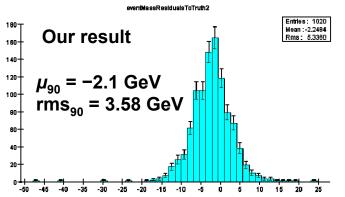


Mass residuals comparison


Doublecheck our simulation & recon

Compare our sid02 running against "official" sid02 results from LCWS08


Barrel region



Endcap region

Additional Ideas

- Remember that the PFA approach is being used outside the context of ILC detectors
 - Example: CMS
 - Joe Incandela: "Particle–Flow Event Reconstruction in CMS and Performance for Jets, Taus, and Emiss_T" http://cms-physics.web.cern.ch/cms-physics/public/PFT-09-001-pas.pdf
- It may be useful to keep in touch with folks outside the ILC PFA community as well
 - ♦ We wonder if it might make sense at some point to hold a PFA workshop addressing both the ILC and non-ILC PFA community
- Can other shower characteristics be used to divide showers into categories with different statistical behavior?
 - What about the effect of leading particles in showers?
 - **♦** Can consideration of lateral vs. longitudinal spread provide information?
 - ♦ Some studies along this line have been done before
 - Is it useful to do so again?
- Look at effects of HCAL cross-talk/noise using digisim
- Choose two or three variants to use as testbed for PFA development
 - Get a better idea of how detector and software improvements change energy resolutions

SiD PFA meeting October 15, 2009