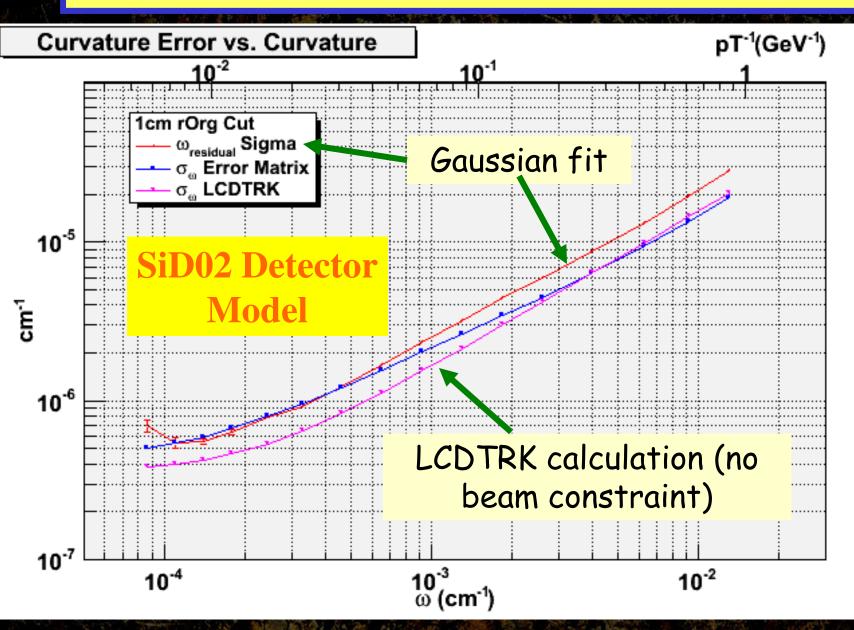


Simulation Studies at SCIPP

Momentum Resolution and Non-Prompt Track Reconstruction

ALCPG09 University of New Mexico Sept 28 – Oct 3, 2009 Bruce Schumm, UCSC/SCIPP

CURVATURE RECONSTRUCTION PERFORMANCE


Many thanks to Alex Bogert (Undergraduate student)

One Question: ILD Higgs LOI recoil reconstruction appears somewhat better than SiD's. Could this be due to curvature reconstruction? (9/30/09 UPDATE: Apparently not! But study still interesting)

CURVATURE RECONSTRUCTION PERFORMANCE

- 1. Compare width of Gaussian fit to residuals with two different estimates:
 - Error from square root of appropriate diagonal error matrix element
 - Error from Billior calculation (LCDTRK program)
- 2. Only tracks with all DOF (5 VTX and 5 CT layers) are considered.
- 3. Require $|\cos\theta| < 0.5$
- Use q/qbar at 500 and 1000 GeV, tau samples at 500 GeV, all mixed together (shouldn't matter)

CURVATURE ERROR vs. CURVATURE

SAMPLE RESULTS AT P_T = 100 Gev

In terms of σ_p/p , at 100 GeV we have LCDTRK 0.28% Residuals 0.39%

The figure from the SiD LOI is about 0.33% (obtained from fits to single muons)

Somewhat contradictory? Need to explore (SCIPP should try single muons, etc.)

UPDATE: SINGLE MUONS AT 100 GeV

In terms of σ_p/p , comparing μ,π with p=100 GeV and $|\cos\theta| < 0.5$ we find

 LCDTRK
 0.28%
 0.28%

 Residuals
 0.37%
 0.39%

 LOT Result
 0.33%

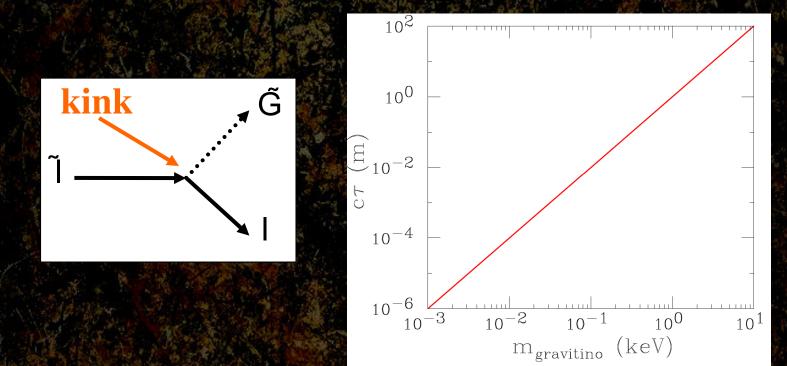
Think... (energy loss in material? I believe current fit is based on circular trajectory)

Separate Results for $\mu^+ \mu^-$

μ

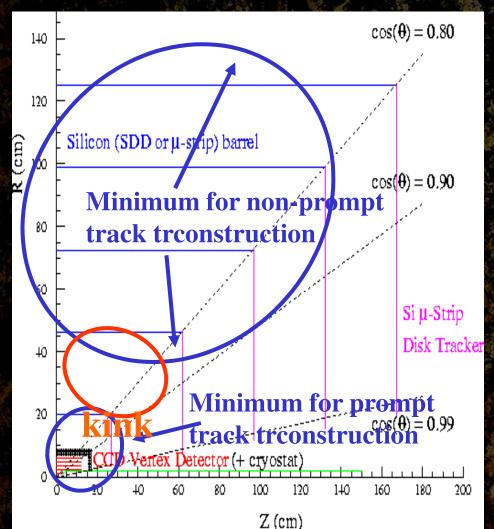
From distributions of ω_{meas} - ω_{true} (units 10⁻⁷ cm⁻¹):

Elan St. House


Means are very small with respect to error on the mean?

STUDIES OF NON-PROMPT TRACK RECONSTRUCTION AT SCIPP

Exploring metastable Stau signatures


Thanks to undergraduates Chris Betancourt, Alex Bogert and Dustin Stolp (and former thesis students Chris Meyer and Tyler Rice)

Gauge-Mediated Supersymmetry Breaking Scenarios with in-flight decay not disfavored by cosmological constraints

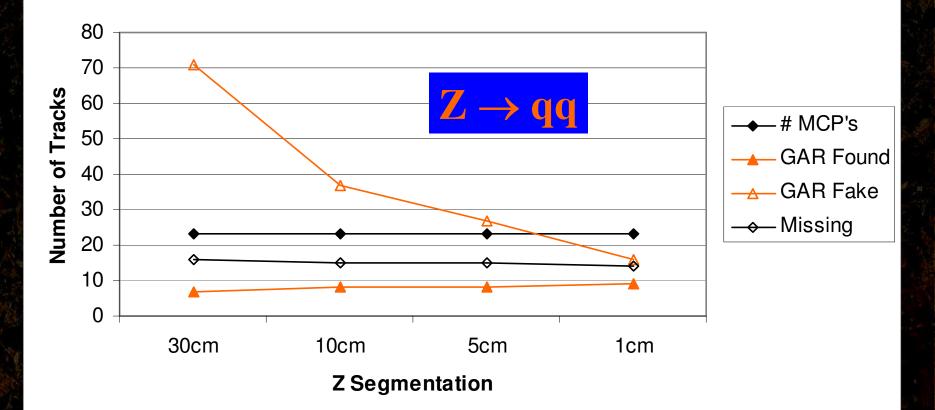
For a reasonable range of, e.g., gravitino mass, signature would be kinked track (possibly with change in rate of ionization loss)

Gauge-Mediated Supersymmetry Breaking II

Well-motivated, tractable signal. This will challenge SiD, and perhaps provide constraints on layout and z segmentation.

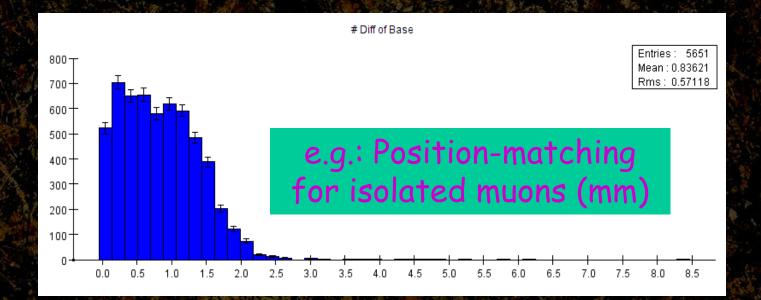
Can we extend this by reconstructing tracks originating outside second tracking layer?

GARFIELD and **SeedExtend**


Two algorithms attempt to use minimum-ionizing track stubs in SiW Cal

GARFIELD (Onoprienko): Extend calorimeter stubs back into tracker; motivated by K⁰_S reconstruction

SeedExtend (former UC students Meyer, Rice): Match three-hit tracker seeds with calorimeter tracking stubs. Geared toward Stau reconstruction.


GARFIELD performance on three-hit tracks

3 Hit Tracks

3-hit efficiency and purity not optimal → SeedExtend alorithm developed at SCIPP

SeedExtend Approach UCSC students proposed matching precise three-hit tracker seeds to Garfield stubs Helix – Stub Matching (optimized for $Z \rightarrow qq$) • Base Difference < 2 mm Phi Difference < 100 milliradians • Curvature Ratio ($(\kappa_{seed} - \kappa_{stub})/\kappa_{seed}$) < 10

SeedExtend Performance; $Z \rightarrow qq$

Of a total of 20 3-hit particles:

- 12 were reconstructed as 3-hit tracks, with only 4 fakes
- Two additional 4-hit particles were found

Encouraging results; how will this do for reconstructing long-lived Stau decays?

GMSB Stau Reconstruction Study SiDSeedTracker algorithm (Partridge) now available for tracker-only tracking: Optimize SiDSeedTracker strategy for prompt stub (Stau track) Run Garfield and SeedExtend sequentially, eliminating hits for found tracks Match inside-out (Stau) stubs with outside in (tau-decay) tracks with "Kinker" algorithm Work being done by UCSC undergrads Alex **Bogert and Dustin Stolp**

How wide a range in R_{dec} can we detect?

Summary

Have looked into accuracy of momentum SiD reconstruction simulation; some questions raised that require further exploration.

Full simulation study of non-prompt signature (GMSB Staus) underway for SiD to explore reach in R_{dec}.

ILD assumed to be robust, but similar study would be of interest.