

SB2009 Availability

John Carwardine For the SB2009 Availability Task Force

John Carwardine

AAP Review, Jan 2010: SB2009 Availability

1

• Task Force

ilr

İİĹ

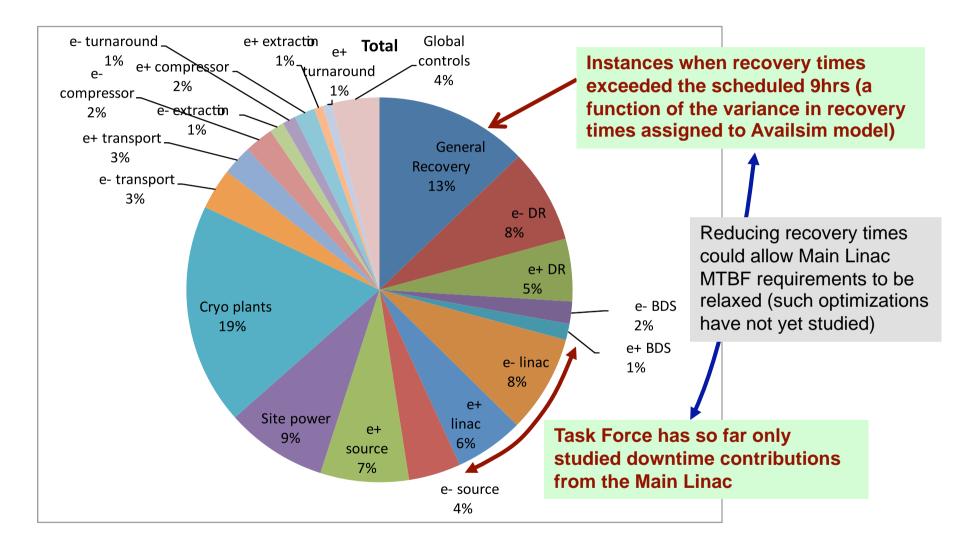
- Tom Himel
- Eckhard Elsen
- Nick Walker
- Ewan Paterson
- John Carwardine
- Marc Ross (chair of full group)
- Ewan Paterson
- Tetsuo Shidara (lead)
- Nobuhiro Terunuma
- Plus major contributions from
 - Chris Adolphsen
 - Shigeki Fukuda
 - Nobu Toge
 - Akira Yamamoto

- To address the question... Are the SB2009 Main Linac configurations viable from an availability stand-point?
- Specific objectives
 - Study the <u>relative</u> technical risk to availability of the SB2009 Main Linac configurations relative to the RDR baseline
 - Aim to show the SB2009 configurations could meet the availability criteria without unduly increasing technical or cost risk over the RDR
 - Evaluate the relationship between energy overhead and availability
- ILC availability requirements (unchanged from the RDR):
 - 9 months of scheduled running time per year plus 3 months of shutdown for maintenance and upgrades
 - Total unscheduled downtime should be less than 25% (we use 15% as the criteria, leaving 10% as contingency)

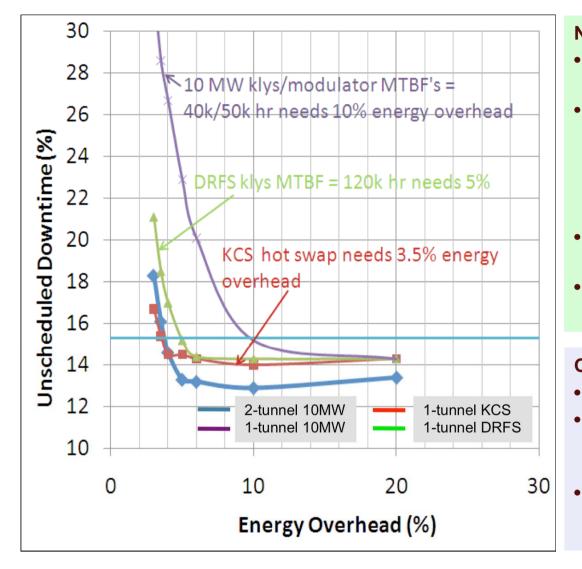
Availsim Methodology

- Inputs to the Availsim simulations
 - ILC overall configuration + each Main Linac configurations
 - A set of 'Starting MTBFs' and MTTRs for the technical components (largely derived from MTBFs achieved in the field)
 - A set of underlying assumptions: ILC operations model; maintenance model; recovery model following downtime, etc
 - Covered in detail in Himel's talk at the Albuquerque meeting
- General approach to the SB2009 Availsim studies
 - 1. Run an initial Availsim simulation using the prescribed inputs
 - 2. Review resulting downtime, adjust input MTBFs for components with proportionately highest downtime
 - 3. Re-run Availsim using the updated MTBFs
 - 4. Iterate, revising the input MBTFs until availability goals were met
- (Not all MTBFs were treated as free parameters, eg klystron MTBFs were kept constant)

ilr


İİĹ

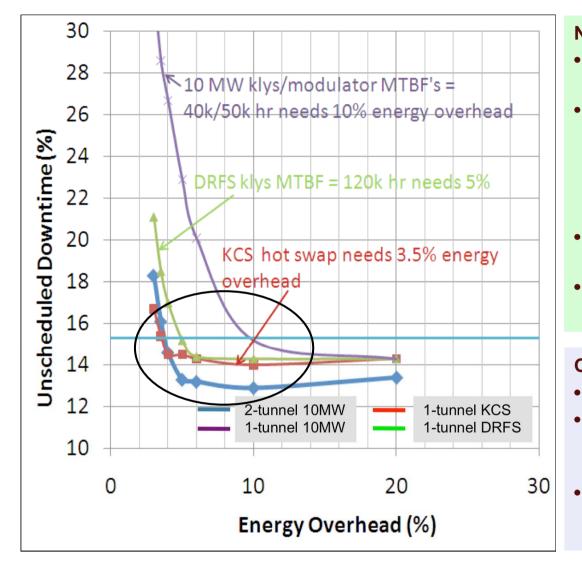
...Availsim methodology


- Final outputs once the availability criteria have been met
 - A candidate set of MTBFs that would meet the ILC availability requirements ('Final MTBFs')
 - A breakdown of the predicted machine downtime
 - A measure of the effect of energy overhead on machine downtime
 - The necessary MTBF 'improvement factors' with respect to in-the-field experience (ie ratios of the Final MTBFs to the Starting MTBFs)
- Four Main Linac HLRF configurations were simulated for several fractions of energy overhead
 - RDR 10MW RF unti in two tunnels (RDR baseline)
 - RDR 10MW RF unit in a single tunnel
 - SB2009 configurations (KCS and DRFS), both in a single tunnel
- Several machine maintenance models were simulated
 - A 3-month shutdown per year with opportunistic maintenance
 - A 3-month shutdown per year with no opportunistic maintenance
 - 24hrs shutdown every 2 weeks + a 1-month shutdown per year

Downtime by accelerator area for KCS simulation (percentages of 15% total downtime)

John Carwardine

Total unscheduled downtime vs energy overhead


Notes

- Chart shows **total** unscheduled downtime for all technical systems
- Failures that require energy overhead fall into two groups
 - Components such as couplers, piezos, tuner motors, etc
 - HLRF failures (subject of study)
- Vertical asymptote: downtime from couplers, piezos, tuner motors, etc
 - Horizontal asymptote: downtime from all non-RF systems (overhead-independent)

Observations

- KCS and DRFS require similar overhead
- 1-tunnel RDR RF unit needs more overhead (but note the lower klystron/ modulator MTBF compared with DRFS)
- KCS model assumes there are no common-mode failures (all hot-swap)

Total unscheduled downtime vs energy overhead

Notes

- Chart shows total unscheduled downtime for all technical systems
- Failures that require energy overhead fall into two groups
 - Components such as couplers, piezos, tuner motors, etc
 - HLRF failures (subject of study)
- Vertical asymptote: downtime from couplers, piezos, tuner motors, etc
 - Horizontal asymptote: downtime from all non-RF systems (overhead-independent)

Observations

- KCS and DRFS require similar overhead
- 1-tunnel RDR RF unit needs more overhead (but note the lower klystron/ modulator MTBF compared with DRFS)
- KCS model assumes there are no common-mode failures (all hot-swap)

Starting MTBFs and (final) adjusted MTBFs for SB2009 configurations

						FNAL		
# 9 A Device	New	New			FNAL	Main		
vi	starting	MTBF	New ending	SLC	Tevatron	Injector	APS	other
Device	MTBF	factor	MTBF	MTBF	MTBF	MTBF	MTBF	MTBF
1 mttf_electronic_module	1.00E+05	3	3.0E+05	1.0E+05				
2 mttf_PS_controller	1.10E+06	3	3.3E+06	8.0E+04	1.8E+05	1.1E+05	1.1E+06	
3 mttf_controls_local_backbone	1.00E+05	10	1.0E+06					
4 mttf magnet	2.00E+06	10	2.0E+07	5.0E+05		2.0E+06		
5 mttf_sc_magnet	3.00E+07	1	3.0E+07		1.6E+06			
6 mttf small magnet	3.40E+07	1	3.4E+07	3.4E+07				
7 mttf PS corrector	1.10E+06	1	1.1E+06	4.3E+05	1.8E+05	1.1E+05	1.1E+06	
8 mttf PS	1.10E+06	3	3.3E+06	4.3E+05	1.8E+05	1.1E+05	1.1E+06	4.0E+0
9 mttf kicker	1.00E+05	1	1.0E+05	1.0E+05				
10 mttf kickpulser	7.00E+03	5	3.5E+04	6.6E+03				
11 mttf modulator	5.00E+04	1		6.4E+04				
12 mttf dr klystron	3.00E+04	1						
13 mttf mb klystron	4.00E+04	1	4.0E+04	5.0E+04				
14 mttf_DRFS_klystron	1.20E+05	1						1.7E+0
15 mttf cavity	1.00E+08	1						
16 mttf coupler intlk	1.00E+06	5		9.6E+04				
17 mttf coupler intlk electronics	1.00E+06	1		9.6E+04				
18 mttf mover	5.00E+05	1		5.1E+05				
19 mttf VacP	1.00E+07	1		3.8E+06				
20 mttf VacP power supply	1.00E+05	1						
21 mttf valve	1.00E+06	5		1.0E+06				
22 mttf_vac_valve_controller	1.90E+05	5		1.9E+05				
23 mttf fs	2.50E+05	30		2.2E+05				
24 mttf xfrmr	2.00E+05	1						
25 mttf waterpump	1.20E+05	. 1		1.2E+05	1.3E+05			
26 mttf water instr	1.30E+05	3		3.0E+04				
27 mttf elec small	1.60E+06	1		3.6E+05				1.6E+0
28 mttf elec big	1.60E+06	1		3.6E+05			6.7E+05	
29 mttf vac mech device	1.00E+05	5					0.72.00	1.02.0
30 mttf laser wire	2.00E+04	1						
31 mttf wire scanner	1.00E+05	1						
32 mttf klys preamp	1.00E+05	1						
33 mttf vacG controller	4.70E+05	1		4.7E+05				
34 mttf cavity tuner	1.00E+06	1		5.1E+05				
35 mttf cavity piezo tuner	5.00E+05	1						
36 mttf power coupler	1.00E+03	1						
37 mttf cryo leak	1.00E+07	10						
38 mttf JT valve	3.00E+05	10						
39 mttf cryo big prob	3.00E+05	1	1.0E+05					
40 mttf target	4.4E+04							
_ 0		1		5.0E+03			3.0E+04	
41 mttf_MPS_region	3.00E+04	1	3.0⊑+04	5.0E+03			3.0E+04	

- Bold: had to improve MTBF above start value:
- Improve>10
- Improve>3
- Improve>1
- Improve<=1
- White: no data

The Improvement Factors can be considered an indication of technical risk

John Carwardine

ilr

İİL

AAP Review, Jan 2010: SB2009 Availability

Starting MTBFs and (final) adjusted MTBFs for ilr SB2009 configurations İİL

Device #	Device	New starting MTBF	New MTBF factor	New ending MTBF	SLC MTBF	FNAL Tevatron MTBF	FNAL Main Injector MTBF	APS MTBF	other MTBF	•	1
	mttf_electronic_module	1.00E+05	Ĵ		1.0E+05						
	mttf_PS_controller	1.10E+06	ļ l	3.3E+06		1.8E+05	1.1E+0	5 1.1E+06			
3	mttf_controls_local_backbone	1.00E+05	10		_						
4	mttf_magnet	2.00E+06	ho				2.0E+06	<mark>6</mark>			
	mttf_sc_magnet	3.00E+07	· / ·	3.0E+07		1.6E+06					
	mttf_small_magnet	3.40E+07	^ ^		3.4E+07					•	I.
	mttf_PS_corrector	1.10E+06	· · ·		4.BE+05			5 1.1E+06			
	mttf_PS	1.10E+06	3				1.1E+0	5 1.1E+06	4.0E+04	•)
9	mttf_kicker	1.00E+05			1.0E+05						
	mttf_kickpulser	7.00E+03	5		6.6E+03						
11	mttf_modulator	5.00E+04	· ·		6.4E+04	ł					
	mttf_dr_klystron	3.00E+04	-								
13	mttf_mb_klystron	4.00E+04			5.0E+04					•	1
14	mttf_DRFS_klystron	1.20E+05		1.2E+05					1.7E+05	5	
15	mttf_cavity	1.00E+08	-	1.0E+08							
	mttf_coupler_intlk	1.00E+06	5	5.0E+06	9.6 E +04						
17	mttf_coupler_intlk_electronics	1.00E+06		1.0E+06	9.6 E +04						
18	mttf_mover	5.00E+05	-	5.0E+05	5.1E+05	5				•	1
19	mttf_VacP	1.00E+07	-	1.0E+07	3.8E+06	5					
20	mttf_VacP_power_supply	1.00E+05	-	1.0E+05							
21	mttf valve	1.00E+06	Ę	5.0E+06	1.00+06	5					
22	mttf vac valve controller	1.90E+05	5	9.5E+05	1.9E+05	5				1	
23	mttf fs	2.50E+05	30	7.5E+06	2.2E+05	5					
24	mttf xfrmr	2.00E+05	-	2.0E+05							
25	mttf_waterpump	1.20E+05		1.2E+05	1.2E+05	5 1.3E+05					
	mttf water instr	1.30E+05	3								
	mttf_elec_small	1.60E+06			3.6E+05	5			1.6E+06	5	
	mttf elec big	1.60E+06	-	1.6E+06	3.6E+05	5		6.7E+05	1.6E+06	5	
	mttf vac mech device	1.00E+05	5							1	
	mttf laser wire	2.00E+04	-							1	
	mttf wire scanner	1.00E+05						1		1	
	mttf klys preamp	1.00E+05						A set c	of canc	lidate	
	mttf vacG controller	4.70E+05	-			5					
	mttf cavity tuner	1.00E+06						meet a	availab	ility ad	C
	mttf cavity piezo tuner	5.00E+05	-								
	mttf power coupler	1.00E+07	ŀ	1.0E+07				choser	n confi	gurati	(
	mttf_cryo_leak	1.00E+05	1	1.0E+06				underl		•	
	mttf JT valve	3.00E+05		3.0E+05	1			unuen	ying as	sound	J
	mttf cryo big prob	1.00E+07	-	1.0E+07	/					1	
	mttf target	4.4E+04	-	- \ /							
	mttf_MPS_region	3.00E+04	-		5.0E+03			3.0E+04			

- **Bold**: had to improve **ITBF** above start alue:
- mprove>10
- mprove>3
- mprove<=1
- Vhite: no data

Improvement Factors be considered an ication of technical risk

BFs that for the nd

John Carwardine

AAP Review, Jan 2010: SB2009 Availability

Starting MTBFs and (final) adjusted MTBFs for SB2009 configurations

b Device	New starting MTBF	New MTBF factor	New ending MTBF		FNAL Tevatron MTBF	FNAL Main Injector MTBF	APS MTBF	other MTEF		•	Bold: had to improve
1 mttf_electronic_module	1.00E+05	3	3.0E+05	1.0E-05							MTBF above start
2 mttf_PS_controller	1.10E+06	3	3.3E+06	8.0 E +04	1.8E+05	1.1E+05	1.1E+06				
3 mttf_controls_local_backbone	1.00E+05	10	1.0E+06								value:
4 mttf_magnet	2.00E+06	10	2.0E+07	5.0E+05		2.0E+06	5				
5 mttf_sc_magnet	3.00E+07	1	3.0E+07	7	1.6E+06				\		Les en en es es - 4.0
6 mttf_small_magnet	3.40E+07	1	3.4E+07	3.4E+07					1	•	Improve>10
7 mttf_PS_corrector	1.10E+06	1	1.1E+06	4.3E+05	1.8E+05	1.1E+05	1.1E+06	5 <mark>7</mark>			
8 mttf_PS	1.10E+06	3	3.3E+0	4.3E+05	1.8E+05	1.1E+05	1.1E+06	4.0E+04		•	Improve>3
9 mttf_kicker	1.00E+05	1	1.0E+0	1.0E+05							
0 mttf kickpulser	7.00E+03	5	3.5E+ 0 4	6.6E+03							lum maria d
1 mttf_modulator	5.00E+04	1	5.0E+04	6.4E+04						•	Improve>1
2 mttf_dr_klystron	3.00E+04	1	_								
3 mttf mb klystron	4.00E+04	1	4.0E+04	5.0E+04						٠	Improve<=1
4 mttf DRFS klystron	1.20E+05	1	1.2E+05					1.7E+05			
5 mttf_cavity	1.00E+08	1									
6 mttf_coupler_intlk	1.00E+06			9.6E+04							
	1.00E+06			9.6E+04							
8 mttf mover	5.00E+05			5.1E+05							White: no data
9 mttf VacP	1.00E+07			3.8E+06							
0 mttf_VacP_power_supply	1.00E+05										
1 mttf valve	1.00E+06			1.0E+06							
2 mttf_vac_valve_controller	1.90E+05			1.9E+05							
3 mttf fs	2.50E+05			2.2E+05							The Improvement Factors
4 mttf xfrmr	2.00E+05										
5 mttf_waterpump	1.20E+05			1.2E+05	1.3E+05						can be considered an
	1.30E+05			3.0E+04							
6 mttf_water_instr	1.60E+05			3.6E+04				1.6E+06			indication of technical risk
7 mttf_elec_small				3.6E+05			6.7E+05				
8 mttf_elec_big	1.60E+06						0.7E+00	1.02+00			
9 mttf_vac_mech_device	1.00E+05										
0 mttf_laser_wire	2.00E+04										
1 mttf_wire_scanner	1.00E+05								1.	_	
2 mttf_klys_preamp	1.00E+05								/ 1		
3 mttf_vacG_controller	4.70E+05			4.7E+05					/		
1 mttf_cavity_tuner	1.00E+06										In-the-field
5 mttf_cavity_piezo_tuner	5.00E+05							/			
6 mttf_power_coupler	1.00E+07			\							experience
7 mttf_cryo_leak	1.00E+05										CAPONOLIOC
8 mttf_JT_valve	3.00E+05										
9 mttf_cryo_big_prob	1.00E+07										
0 mttf_target	4.4E+04			-							
1 mttf_MPS_region	3.00E+04	1	3.0E+04	5.0E+03			3.0E+0	·			

John Carwardine

AAP Review, Jan 2010: SB2009 Availability

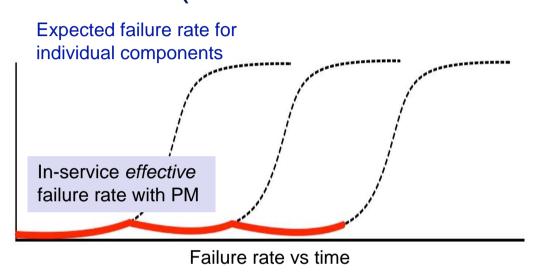
•

- The set of needed MTBFs is beyond operational experience
 - Very difficult for all configurations (RDR included)
- Improvement Factors from Availsim modeling give a sense of the technical risk in achieving the availability
 - Relative to operations experience (largely at SLAC and FNAL)
 - 'Best-in-class' MTBFs gets us closer to the needed MTBFs (lower risk)
 - Commercial and industrial experience
 - Other accelerator facilities, eg light sources
- In practical terms, there is more to Availability than MTBFs
 - Integrated approach to mitigating failures, repair/recovery times
 - Engineering processes, eg consistent designs, design margins, QC/QA
 - Redundancy is not always the answer
- Proactive maintenance during scheduled shutdowns will be essential to achieving availability during operations

IEEE Gold Book: power distribution reliability data from in-service surveys (Estimated Times To Failure)

Table 4.5. Reliability of industrial components.³⁷ Description MTTR (hours) $\lambda_{\rm P}$ (per year) Low Typical High Low Typical High Liquid Filled Transformers 0.0053 0.0060 0.0073 39 300 1000 Molded Circuit Breakers 0.0030 0.0052 0.0176 1.0 5.8 10.6 0.0030 🔨 0.0036 Drawout Breakers 0.0023 1.0 7.6 232 0.0020 0.0061 0.0100 **Disconnect Switches** 1.0 2.810.6 0.0008^{1} 0.0030^{1} 0.0192^{1} Switchgear Bus 17 28 550 0.0014^2 Cable (not buried) 0.0100^2 0.0492^{2} 5.3 7.0 457 0.0034^2 0.0050^2 0.0062^2 15 Cable (buried) 35 97 Cable Terminations 0.0003 0.0010 0.0042 2.810.6 1.0¹Failure rates for switchgear bus are per circuit foot. 1.6e6 hrs ETTF ²Failure rates for cable are per 1000 circuit feet.

> Source: 'IEEE Recommended Practice for the Design of Reliable Industrial and Commercial Power Systems' (IEEE "Gold Book")


"Crude estimates" of some MTBFs for Advanced Photon Source storage ring

Number of beam loss events													
System	2003	2004	2005	2006	2007	2008	Total	Num units	Unit-hrs	MTBF (khrs)			
PS	18	9	14	4	11	18	74	1600	4.0E+07	541	Multipoles and correctors are included		
Network	2	4	0	1	2	0	9	40	1.0E+06	111	Assume one network 'system' per sector		
Interlocks	16	18	5	8	4	2	53	61	1.5E+06	29	Accelerator M	PS + 40 beamlir	ne MPS
Electrical		1	1	0	1	0	3	80	2.0E+06	667	Assume 2 tran	sformers per se	ctor
Controls	1	8	1	3	2	2	17	250	6.3E+06	368	Assumes 250	front-end contro	llers (IOCs)

Crude numbers!

• Total run time is ~30,000 hrs (5000hrs/year)

Proactive Maintenance (Increase effective Availability)

Basic premise

 Take advantage of scheduled downtime to increase the effective availability during scheduled uptime

Approach

- Preemptively replace or service components that degrade or have finite life
- Assumed for both RDR and SB2009

Power converter examples

- Replace water hoses before they rot and cause a leak
- Use thermal imaging to identify loose joints on busbars, poor contact between power transistors and heatsink, etc
- Replace power transistors that show signs of leakage
- Perform 'stress tests' on power converters during downtime periods to deliberately cause the weakest ones to fail
 - Example of stress test: repeatedly cycle power converter output from low to maximum output at a rate that causes maximum thermal cycling.

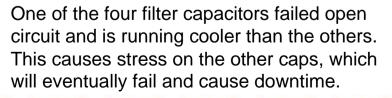
Possible further Availsim studies

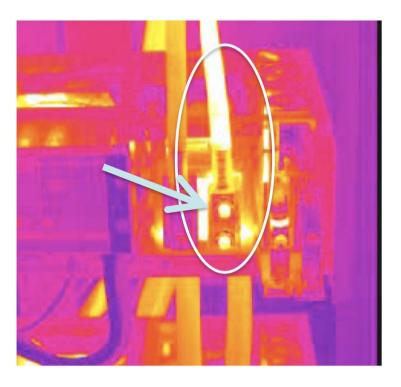
- Availsim detailed results are strongly dependent on the input assumptions, eg operations and recovery models
 - Need to better understand sensitivities
- SB2009 specific
 - Trade studies on energy / RF power overhead
 - Evaluate sensitivity to klystron/modulator MTBFs
 - Separately evaluate sensitivity to 'cold mass' failures
 - Further evaluate sensitivities to underlying assumptions, eg mitigating specific failures, recovery model
- Trade studies on technical risk across entire machine
 - Relative allocations of downtimes across areas/systems
 - Continue to survey in-the-field experience take credit for best-in-class MTBFs (lower the technical risk)

- As specified, both SB2009 Main Linac configurations appear viable from an availability perspective
 - A set of ingredients has been established
 - Degree of difficulty appears similar to RDR 2-tunnel
- Availability simulations <u>do not discount</u> an RDR HLRF singletunnel configuration, but we have not evaluated this in any detail
- We need to use Availsim to better understand sensitivities
- The technical risk is lower than described in the RDR if we take credit for system-by-system 'best-in-class' availability


Backups

John Carwardine


MTBF improvement factors used in RDR


Needed ILC MTBF Improvements

	1222 1222 22	Downtime		1.20000
	Needed	(%) due to	Nominal	Nominal
	Improvement	these	MTBF	MTTR
Device	factor	devices	(hours)	(hours)
power supplies	20	0.2	50,000	2
power supply controllers	10	0.6	100,000	1
flow switches	10	0.5	250,000	1
water instrumention near pump	10	0.2	30,000	2
magnets - water cooled	6	0.4	3,000,000	8
kicker pulser	5	0.3	100,000	2
coupler interlock sensors	5	0.2	1,000,000	1
collimators and beam stoppers	5	0.3	100,000	8
all electronics modules	3	1.0	100,000	1
AC breakers < 500 kW		0.8	360,000	2
vacuum valve controllers		1.1	190,000	2
regional MPS system	Section and the section of the	1.1	5,000	1
power supply - corrector	Charles (Constant)	0.9	400,000	1
vacuum valves		0.8	1,000,000	4
water pumps		0.4	120,000	4
modulator		0.4	50,000	4
klystron - linac		0.8	40,000	8
coupler interlock electronics		0.4	1,000,000	1
vacuum pumps		0.9	10,000,000	4
contrals backbone	eview, Jan 2010: SB20		300,000	Tom Hime

Loose cable connection causing excessive heat in lugs and cables

AD&I Meeting at DESY, 2-3 Dec 09: Estimating MTBFs (Carwardine)