

Issues on ILC Damping Rings

Guoxing Xia FLC Group in DESY

Nov. 24, 2005

Part I Overview of CERN DR meeting

Part II Fast Beam Ion Instability (FBII)

Part III Summary and Future Plan

Part I Overview of CERN DR meeting

- 2.5 days of intensive meeting
- ~34 participants
- Issues on every aspects of damping rings
- Formed the Baseline Configuration Recommendation (BCD) for GDE
- 6km and 2×6km rings as the candidates of ILC electron and position damping rings, respectively

http://www.desy.de/~awolski/ILCDR/

Reports at the meeting

- Task force 1: Acceptance Issues
- Task force 2: Vertical Emittance Tunning
- Task force 3: Classical Instabilities
- Task force 4: Space-Charge Effects
- Task force 5: Kicker Technology
- Task force 6: Electron Cloud
- Task force 7: Fast-Ion Instability
- Task force 8:Cost Estimates
- Task force 9: Reliability and Operability
- Task force 10: Polarization

Special session: CESR damping ring test facility

Issues on ILC damping rings

- Circumference
- Beam energy
- Injected emittance and energy spread
- Bunch train length and bunch charge
- Extracted bunch length
- Injection and extraction kickers
- Damping wiggler
- Multipole magnets
- RF system technology
- Vacuum chamber aperture
- Feedback systems, instrumentation and controls

	Q		Injected emittance/e	Bunch train length/t	Extracted t	Injection/extra	Dam	Multi _f	RF systen	H	Vacuum chan
	ircumference	Beam energy	nergy spread	unch charge	ounch length	ction kickers	ping wiggler	oole magnets	ı technology	F frequency	ıber aperture
Circumference		•	•	•	•	•	•				
Beam energy	•		•	•	•		•				
Injected emittance/energy spread	•	•					•				•
Bunch train length/bunch charge	•	•			•	•				•	
Extracted bunch length	•	•		•							
Injection/extraction kickers	•			•							
Damping wiggler	•	•	•								•
Multipole magnets											
RF system technology											
RF frequency				•							
Vacuum chamber aperture			•				•				

Issues on ILC damping rings (cont')

Kank	: Meaning				
A	 This issue: is critical to the corresponding item in the configuration decision, has significant technical, operational or cost implications associated with it; is likely to be a key consideration in choosing between the various options. 	The significance of the issues relevant to each configuration item			
В	This issue is important for the corresponding item in the configuration of but should not be considered a decisive factor.	lecision,			
С	This issue has only a minor impact on the corresponding item	in the	The risk associated with the various options are ranked		
	configuration decision.	Rank	Meaning		
		1	The performance requirements of this option have been demonstrated, or studies indicate little risk.		
		2	Some R&D is required to demonstrate performance requirements, but with a likelihood of successful outcome; <i>or</i> low technical risk, and a practical fix will likely be found in event that a problem occurs.		
		3	Significant R&D is required to demonstrate performance requirements; <i>or</i> high technical risk, with likelihood to cause ongoing problems.		
The c	ost impacts of the various options are ranked	4	There is unlikely to be an acceptable technical solution.		
Rank	Meaning				
1	Lowest cost option, or close to lowest cost.				
2	Up to roughly factor of two greater cost than lowest cost option.				
3	Up to roughly factor of three greater cost than lowest cost option.				
4	More than a factor of three greater cost than lowest cost option				

Issues on ILC damping rings (cont')

Issues Ranking

T	G	Risks				
Issue	Significance	3 km	6 km	2×6 km	17 km	
Electron cloud (positron ring)	Α	4	3	2	2	
Kickers	A	3	2	2	2	
Acceptance	A	2	1	1	2	
Cost	A	1	2	3	3	
Ion effects (electron ring)	В	3	2	2	2	
Space-charge	В	1	1	1	2	
Tunnel layout	В	1	1	1	2	
Availability	С	1	1	1	1	
Classical collective effects	С	2	2	2	2	
Low-emittance tuning	С	2	2	2	2	
Polarization	С	1	1	1	1	

Recommendations summarized

Item	Baseline	Alternatives
Circumference	(e ⁺) 2×6 km (e ⁻) 6 km	1. (e ⁺) 6 km 2. (e ⁺) 17 km
Beam energy	5 GeV	
Injected emittance and energy spread	0.09 m-rad and 1% FW	0.045 m-rad and 2% FW
Train length @ bunch charge	2800 @ 2×10 ¹⁰	>2800
Extracted bunch length	6 mm - 9 mm	
Injection/extraction kicker technology	Fast pulser/stripline kicker	 RF separators Fourier pulse compressor
Wiggler technology	Superconducting	 Normal-conducting Hybrid
Main magnets	Electromagnetic	Permanent magnet
RF technology	Superconducting	Normal conducting
RF frequency	500 MHz	
Vacuum chamber diameter, arcs/wiggler/straights	50 mm/46 mm/100 mm	
Vacuum system technology		

---- Excerpt from recent slides of Andy Wolski

- Ion effects arise when ions are trapped in the potential well of the beam
- Ions accumulate until stabilized by neutralization, second ionization, etc
- In high current storage rings or linacs with long bunch trains, the ions accumulate during the passage of a single bunch train
- This leads to fast beam ion instability, which is noticeable in the damping rings for ILC

What is FBII ?

- FBII is due to residual gas ionization
- Beam bunches' motion couples the ions'
- FBII is a single pass instability like BBU, unlike the classical trapped-ion instability

What is FBII (cont')?

FBII can arise ions in an electron beam or electrons in a positron (proton) beam

Linear theory of FBII

$$rac{d^2 y_b(s,z)}{ds^2} + \omega_eta^2 y_b(s,z) = K[y_i(s,s+z) - y_b(s,z)] \int_{-\infty}^z
ho dz'$$

$$rac{d^2 ilde{y}_i(s,t)}{dt^2}+\omega_i^2(z)[ilde{y}_i(s,t)-y_b(s,z)]=0$$

$$y_i(s,t) = rac{\int_{-\infty}^z dz'
ho ilde{y}_i(s,t)}{\int_{-\infty}^z dz'
ho}$$

$$K \equiv \frac{2\lambda_{ion}e_e}{\gamma\Sigma_y(\Sigma_x + \Sigma_y)} \qquad \qquad \omega_i(z) \equiv \sqrt{\frac{2N_b r_p}{L_{sep}A\Sigma_y(\Sigma_x + \Sigma_y)}}$$

 \checkmark lons generated in the beam by collision ionization

 \checkmark Assume the trapped particles are stable in train and have small initial velocities

---- Excerpt from SLAC-PUB-6740

Linear theory of FBII (cont')

Linear theory assuming collisional ionization and stable ions in the beam

$$\lambda = 6N_{tot}P[\text{Torr}] \qquad y_b \sim \frac{y_0 e \sqrt{t/\tau_c}}{(t/\tau_c)^{1/4}} \quad \text{(quasi-exponential growth)}$$
$$\frac{1}{\tau_c} = \frac{4d_{gas}\sigma_{ion}\beta_y N_b^{3/2} n_b^2 r_e r_p^{1/2} L_{sep}^{1/2} c}{3\sqrt{3}\gamma \sigma_y^{3/2} (\sigma_x + \sigma_y)^{3/2} A^{1/2}}$$
$$\omega_i = \left(\frac{4N_b r_p c^2}{3AL_{sep}\sigma_y (\sigma_x + \sigma_y)}\right)^{1/2}$$

By considering the decoherence of ions, the growth time will become as

 $y \sim \exp(t \, / \, \tau_e)$

Exponential growth !

$$\frac{1}{\tau_e} = \frac{1}{\tau_c} \frac{c}{2\sqrt{2}l_{train}} (\Delta \omega_i)_{rms}$$

Trapping mass

The critical ion mass (a.m.u) above which ions can be trapped, increases during the store as the beam size shrinks (SLC damping ring)

---- Excerpt from SLAC-PUB-7546

Ion frequency

The oscillation frequencies for two different ion species as a function of store time during which the beam shrinks

---- Excerpt from SLAC-PUB-7546

Ion linear density

Predicted ion linear density, increase linearly with time then decreasing with the beam size (SLC damping ring)

---- Excerpt from SLAC-PUB-7546

Effects due to FBII

The vertical beam size blow-up
Growth of vertical emittance
Tune shifts due to FBII
Beam lifetime ?

Experimental study of FBII

First observation of FBII at ALS

Figure 5: RMS vertical beam size versus the number of bunches for nominal and elevated pressure conditions.

400 80 mA, 160/328 bunches. 85 mA, 160/328 bunches, helium added nominal pressure 200 Y (pum) -200 -400 -200 -100 0 100 200 -200 -100 100 200 0 X (µm) X (µm) nom. pressure, 80 mA, 160 bunches He added, 85 mA, 160 bunches 250 σ= 114±3.1 μr σ= 34.3±0.39 μm 200 õ 150 100 400 400 .400-200 0 200 -400 -200 200

Figure 4: Transverse profile images (shown as contour plots) of the beam for nominal pressure and with helium added; the vertical profile for each image is also shown along with a fit to a gaussian distribution.

Y (µm)

Y (µm)

---- Excerpt from J.Byrd et al., PAC97

Effects due to FBII (cont')

Tune shift due to FBII (ion-induced incoherent tune shift)

$$\Delta Q_{y} = \frac{r_{e}\beta_{y}\lambda_{ion}C}{\gamma 2\pi\sigma_{y}(\sigma_{x}+\sigma_{y})}$$

 β_{y} is the average vertical beta function, λ_{ion} the ion line density, *C* the ring circumference

Ion-induced coherent tune shift is half of incoherent tune shift

Growth time of FBII (cont')

Ring	PPA	OTW	OCS	BRU	МСН	DAS	TESLA
Wiggler	127	225	350	824	721	592	609
ARC	2697	898	4722	3180	3455	3052	2015
Long straight	0	2101	1040	2329	11759	13370	14376

Growth time and tune shifts in different damping rings for CO+

Ring	PPA	OTW	OCS	20CS	BRU	МСН	DAS	TESLA
$ au_{wiggler}$ (µs)	0.6	0.8	0.8	1.6	0.7	1.75	2.67	2.4
$\tau_{arc}^{}\left(\mu s\right)$	25	4.2	3.6	6.9	3.56	9.43	12.7	13.5
$\tau_{\mathrm{straight}}\left(\mu s\right)$		43	19	38	46	52	54	53
$\tau_{ring}^{}(\mu s)$	2.6	8.7	4.4	8.3	3.2	20.5	40.2	43
$\tau_{_{\mathrm{ring}}}$ in turns	0.28	0.81	0.22	0.2	0.15	0.39	0.71	0.76
Tune shift	0.33	0.2	1.05	1.0	0.5	0.69	0.72	0.9

Pwiggler=2.0nTorr;

Conclusion: 17km Rings (DAS/MCH/TESLA)

Plong_straight =0.1nTorr

P_arc=0.5nTorr

have a longer growth time

Growth time of FBII (cont')

$$\tau_{asym,e^+}^{-1} \approx 7 p(\text{Torr}) \frac{N_b^{3/2} r_e^{3/2} \sigma_z^{1/2} c}{\gamma \sigma_y^{3/2} (\sigma_x + \sigma_y)^{3/2} \omega_\beta}$$

Asymptotic growth times due to FBII in positron damping rings in 0.1nTorr

Damping Rings	PPA	OTW	OCS	BRU	МСН	DAS	TESLA
Growth time (ms)	1.2978	1.5282	1.4863	1.7712	7.7502	8.0797	2.3356
Growth time (turns)	137.9	142.2	72.9	83.9	145.9	142.5	41.2

Conclusion: the expected instability rise time for the positron damping ring is a few ms, which is long enough and comparable to the synchrotron period, hence the synchrotron motion will prevent the build-up of the instability.

OCS

Potential cures

- Upgrade the vacuum pressure (source of ions production)
- Increase the ion frequencies spread using an optical lattice, so that the ion frequencies varies significantly with the time, and no coherent oscillation can therefore develop
- Introduce the gaps in the bunch train in order to clear the ions or make beam shaking
- Bunch by bunch feedback system to realign the trailing bunch

Simulations of FBII

Simulations: Ion_MAD (lattice tracking PIC code)

- Beam and ions are represented by macro-particles
- Track through lattice as defined in MAD deck
- Beam is assumed Gaussian when calculating forces
- Ion fields are calculated using 2-D FFT
- Fields are mapped onto grid ±5σx,y
- Ions are generated at rest and are assumed non-relativistic
- Synchrotron motion is included but no longitudinal motion of ions
- Ions are discarded after bunch train

3,1x10⁻⁶

× 3,0x10

2,9x10⁻⁶ ∟ 0

5

10

Simulation of FBII (cont')

- By using Strong-Strong model developed by T. Raubenheimer
- The blow-up of vertical oscillation amplitude
- The growth of vertical emittance

Beam oscillation amplitude along the bunch train

15

20

Bunch

25

30

35

40

OCS DR, E=5.066 GeV, Vacuum pressure 1E-9Torr, no radiation damping rate, no feedback damping (50th turn)

Beam emittance variations due to FBII in TESLA Damping Ring

Action of Betatron oscillation vs. revolution turns

Simulation of fast ion instability in KEKB

Weak-Strong model developed by K. Ohmi (The ions are represented as marco-particles while the beam bunch is rigid (only the barycenter motion of beam is considered))

Coupled bunch pattern due to FBII in KEKB, the vacuum pressure is assumed to be 1nTorr. Oscillation amplitude *vs.* bunch ID

- FBII is a potential limitation for many multibunch small emittance storage rings as damping rings of ILC
- FBII should be studied further and experimental verification
- Benchmarking simulation work should be done further

Future Plan

- Simulate the fast beam ion instability in OCS damping ring
- Compare the FBII results from Weak-Strong model and Strong-Strong model
- Code development for ion effects

Also

- Mini-gap in the bunch train to mitigate the ion effects
- Ion induced pressure instabilities in the positron ring
- And so on...

OCS lattice optimization

Fast ion instability in OCS electron damping ring

Part III Summary and Future Plan

Thanks !

Appendix I (emittance and energy spread damping)

$$\sigma_{x}(t) = \sqrt{\varepsilon_{x}(t)\beta_{x} + \eta_{x}^{2}\sigma_{\delta}^{2}(t)}$$

$$\sigma_{y}(t) = \sqrt{\varepsilon_{y}(t)\beta_{y} + \eta_{y}^{2}\sigma_{\delta}^{2}(t)}$$

$$\eta_{y} \approx 0$$

$$\varepsilon_{x}(t) = \varepsilon_{x,0}e^{-2t/\tau_{x}} + (1 - e^{-2t/\tau_{x}})\varepsilon_{x,\infty}$$

$$\varepsilon_{y}(t) = \varepsilon_{y,0}e^{-2t/\tau_{y}} + (1 - e^{-2t/\tau_{y}})\varepsilon_{y,\infty}$$

$$\sigma_{\delta}(t) = \sigma_{\delta,0}e^{-t/\tau_{\delta}} + (1 - e^{-t/\tau_{\delta}})\sigma_{\delta,\infty}$$

Here, $\varepsilon_x(t), \varepsilon_y(t)$ are horizontal and vertical emittance, respectively $\varepsilon_{x,0}, \varepsilon_{y,0}$ are initial H. and V. emittance, respectively $\varepsilon_{x,\infty}(t), \varepsilon_{y,\infty}(t)$ are equilibrium H. and V. emittance respectively σ_δ the rms energy spread; '0' and ' ∞ ' refer to initial and equilibrium value

Appendix II

- Growth rate scales as $(\sigma_y \sigma_x)^{-3/2}$, namely $(\beta_x \beta_y)^{-3/4}$
- Important for low emittance beams in linear collider