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Part I  Overview of CERN DR meeting

• 2.5 days of intensive meeting
• ~34 participants 
• Issues on every aspects of damping rings
• Formed the Baseline Configuration 

Recommendation (BCD) for GDE
• 6km and 2×6km rings as the candidates of ILC 

electron and position damping rings, 
respectively

http://www.desy.de/~awolski/ILCDR/



Reports at the meeting
• Task force 1: Acceptance Issues
• Task force 2: Vertical Emittance Tunning
• Task force 3: Classical Instabilities
• Task force 4: Space-Charge Effects
• Task force 5: Kicker Technology
• Task force 6: Electron Cloud
• Task force 7: Fast-Ion Instability
• Task force 8:Cost Estimates
• Task force 9: Reliability and Operability
• Task force 10: Polarization

Special session: CESR damping ring test facility
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Issues on ILC damping rings
• Circumference
• Beam energy
• Injected emittance and energy spread
• Bunch train length and bunch charge
• Extracted bunch length
• Injection and extraction kickers
• Damping wiggler
• Multipole magnets
• RF system technology
• Vacuum chamber aperture
• Feedback systems, instrumentation and controls
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Issues on ILC damping rings (cont’)

Part I  Overview of CERN DR meeting

The significance of the issues relevant to
each configuration item

The risk associated with the various options are ranked

The cost impacts of the various options are ranked



Issues on ILC damping rings (cont’)

Part I  Overview of CERN DR meeting

Issues Ranking

http://www.linearcollider.org/wiki/lib/exe/fetch.php?cache=cache&media=bcd%3Adamping_ring%3Ap15.jpg


Recommendations summarized

---- Excerpt from recent slides of Andy Wolski
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Ion effects arise when ions are trapped in the 
potential well of the beam
Ions accumulate until stabilized by 
neutralization, second ionization, etc
In high current storage rings or linacs with long 
bunch trains, the ions accumulate during the 
passage of a single bunch train
This leads to fast beam ion instability, which is 
noticeable in the damping rings for ILC

Part II   Fast Beam Ion Instability



• FBII is due to residual gas ionization
• Beam bunches’ motion couples the ions’
• FBII is a single pass instability like BBU, unlike 

the classical trapped-ion instability

What is FBII ?
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What is FBII (cont’)?

FBII can arise ions in an electron beam or 
electrons in a positron (proton) beam
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What is FBII? (cont’)

Transient effect !

•Ions are cleared out by a gap
•Transient (single pass) phenomenon
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Linear theory of FBII

Ions generated in the beam by collision ionization
Assume the trapped particles are stable in train and have small initial velocities

Part II Fast Beam Ion Instability
---- Excerpt from SLAC-PUB-6740



Linear theory of FBII (cont’)
Linear theory assuming collisional ionization and stable ions in the beam 
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By considering the decoherence of ions, the growth time will become as
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Trapping mass
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The critical ion mass (a.m.u) above which ions can be trapped, 
increases during the store as the beam size shrinks (SLC damping ring)

---- Excerpt from SLAC-PUB-7546
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Ion frequency
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The oscillation frequencies for two different
ion species as a function of store time

during which the beam shrinks

---- Excerpt from SLAC-PUB-7546
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Ion linear density

Predicted ion linear density, increase linearly with time 
then decreasing with the beam size (SLC damping ring)

---- Excerpt from SLAC-PUB-7546
Part II Fast Beam Ion Instability



Effects due to FBII

The vertical beam size blow-up
Growth of vertical emittance
Tune shifts due to FBII
Beam lifetime ?
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Experimental study of FBII
• First observation of FBII at ALS

Part II Fast Beam Ion Instability
---- Excerpt from J.Byrd et al., PAC97



Effects due to FBII (cont’)
Tune shift due to FBII (ion-induced incoherent tune shift)

is the average vertical beta function,      the ion line density, C the ring 
circumference
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Ion-induced coherent tune shift is half of incoherent tune shift



Ring PPA OTW OCS BRU MCH DAS TESLA

Wiggler 127 225 350 824 721 592 609

ARC 2697     898 4722 3180 3455 3052 2015

Long straight
0

2101 1040 2329 11759 13370 14376

Ring PPA OTW OCS 2OCS BRU MCH DAS TESLA

τwiggler (μs) 0.6 0.8 0.8 1.6 0.7 1.75 2.67 2.4

τarc (μs) 25 4.2 3.6 6.9 3.56 9.43 12.7 13.5

τstraight (μs) 43 19 38 46 52 54 53

τring (μs) 2.6 8.7 4.4 8.3 3.2 20.5 40.2 43

τring in turns 0.28 0.81 0.22 0.2 0.15 0.39 0.71 0.76

Tune shift 0.33 0.2 1.05 1.0 0.5 0.69 0.72 0.9

Growth time and tune shifts in different damping rings for CO+

Growth time of FBII (cont’)
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Pwiggler=2.0nTorr; 

Plong_straight =0.1nTorr

P_arc=0.5nTorr

Conclusion: 17km Rings (DAS/MCH/TESLA)

have a longer growth time



Growth time of FBII (cont’)

Damping Rings PPA OTW OCS BRU MCH DAS TESLA

Growth time (ms) 1.2978 1.5282 1.4863 1.7712 7.7502 8.0797 2.3356

Growth time 
(turns) 137.9 142.2 72.9 83.9 145.9 142.5 41.2

Asymptotic growth times due to FBII in positron damping rings in 0.1nTorr
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Conclusion: the expected instability rise time for the positron damping 
ring is a few ms, which is long enough and comparable to the synchrotron 
period, hence the synchrotron motion will prevent the build-up of the 
instability. 

Part II Fast Beam Ion Instability



Growth time of FBII (cont’)
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Bunch ID.

TESLA
The FBII rise time variation versus 
bunch ID for the straight section
of 3 damping rings
－ without ion frequency spread
－ 10% ion frequency spread
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OCS

OTW



Potential cures
Upgrade the vacuum pressure (source of ions production)
Increase the ion frequencies spread using an optical lattice, 
so that the ion frequencies varies significantly with the time, 
and no coherent oscillation can therefore develop
Introduce the gaps in the bunch train in order to clear the 
ions or make beam shaking
Bunch by bunch feedback system to realign the trailing 
bunch 
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Simulations of FBII

Simulations: Ion_MAD (lattice tracking PIC code)
• Beam and ions are represented by macro-particles
• Track through lattice as defined in MAD deck
• Beam is assumed Gaussian when calculating forces
• Ion fields are calculated using 2-D FFT
• Fields are mapped onto grid ±5σx,y
• Ions are generated at rest and are assumed non-relativistic
• Synchrotron motion is included but no longitudinal motion of 

ions 
• Ions are discarded after bunch train
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Simulation of FBII (cont’)
• By using Strong-Strong model developed by T. Raubenheimer
• The blow-up of vertical oscillation amplitude 
• The growth of vertical emittance
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Growth of the action of the vertical centroid
in ATF for carbon monoxide (atomic mass 28), 
in a pressure 1×10-8 Torr.

Beam oscillation amplitude 
along the bunch train 
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Simulation of FBII (cont’)
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OCS DR, E=5.066 GeV,  Vacuum pressure 1E-9 Torr,
no radiation damping rate, no feedback damping
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Simulation of FBII (cont’)

OCS DR, E=5.066 GeV,  Vacuum pressure 1E-9Torr, no 
radiation damping rate, no feedback damping ( 50th turn)
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Beam emittance variations due to FBII in 
TESLA Damping Ring

Simulation of FBII (cont’)

Vacuum pressure 1E-7
N_slices 51
N_b=2E10

Emit_x=1E-9
Emit_y=2E-12

Bunch length=0.006
Bunch spacing=6.0
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N_slices 51
N_b=2E10

Emit_x=1E-9
Emit_y=2E-12

Bunch length=0.006
Bunch spacing=6.0

Simulation of FBII (cont’)
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Beam offset in Tesla damping ring due to FBIIBeam offset in Tesla damping ring due to FBII

Vacuum Vacuum pressure 1E-9Torr
pressure 1E-9 Torr
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Data from tesla_dr5.dat
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Simulation of FBII (cont’)
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Simulation of  fast ion instability in KEKB
Weak-Strong model developed by K. Ohmi (The ions are represented as marco-particles 
while the beam bunch is rigid (only the barycenter motion of beam is considered ) )

Action of Betatron oscillation vs. revolution turns
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Simulation of FBII (cont’)
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Coupled bunch pattern due to FBII in KEKB, the vacuum pressure is 
assumed to be 1nTorr. Oscillation amplitude vs. bunch ID
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Simulation of FBII (cont’)
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Simulation of fast ion instability in KEKB

Simulation of FBII (cont’)



Part III Summary and Future Plan

FBII is a potential limitation for many multi-
bunch small emittance storage rings as 
damping rings of ILC
FBII should be studied further and 
experimental verification
Benchmarking simulation work should be 
done further   



Future Plan

• Simulate the fast beam ion instability in OCS damping 
ring

• Compare the FBII results from Weak-Strong model and 
Strong-Strong model

• Code development for ion effects

Also
• Mini-gap in the bunch train to mitigate the ion effects 
• Ion induced pressure instabilities in the positron ring
• And so on…
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Fast ion instability in OCS electron damping ring 
OCS lattice optimization
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Thanks !Thanks !



Appendix I
(emittance and energy spread damping)
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Here,                  are horizontal and vertical emittance, respectively
are initial H. and V. emittance, respectively
are equilibrium H. and V. emittance respectively
the rms energy spread; ‘0’ and ‘∞’ refer to initial and 
equilibrium value
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Appendix II

• Growth rate scales as           ,namely 
• Important for low emittance beams in linear 

collider
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