The SiD Work Plan: 2010-2012

The SiD collaboration

I. Introduction

The SiD Work Plan has been designed to provide milestones, schedule, and a list of resources needed to develop a detailed baseline design of the SiD detector, suitable for producing a Detector Technical Report by the end of 2012 to accompany the GDE's Technical Report. With the GDE's Technical Report, it is to serve as a proposal to the world high energy physics community to engage in the construction of the ILC and its detectors. Like the GDE report, the Detector Technical Report is to make a compelling case that detectors capable of fully exploiting the physics potential of the ILC are feasible, cost effective, and based on demonstrated detector technologies. Specifically, the Detector Technical Report addresses the Work Plan proposed by the ILC Research Director, which calls out the following goals for the Technical Reports:

- Demonstrate proof of principle for critical components
- Define a feasible baseline design
- Develop a realistic integrated mechanical design for the detector
- Develop a correspondingly realistic simulation model of the detector
- Develop the push-pull mechanism and procedures needed to interchange ILC detectors
- Simulate and analyze updated benchmark reactions with a realistic detector model, including the effects of backgrounds
- Simulate and analyze new benchmark reactions at 1 TeV
- Develop an improved cost estimate

This document is the natural outgrowth of the SiD R&D plan which was included in the SiD Letter of Intent. It elaborates the plans put forward there.

This document also extends the SiD R&D plan in an essential way, by including estimates of the resources needed to fulfill the goals of the Research Director's Work Plan. As will become clear, the resources required to produce a believable Detector Technical Report have not yet been secured. Perhaps the most important use for the present document is to quantify the differences between resources in hand and those needed to produce a credible proposal, in the hopes of thereby facilitating securing additional support.

SiD has attempted to adopt a minimalist approach in estimating the resources needed for this next phase of detector development. Our conception of the Technical Report differs from the common notion of a "technical design report", in that it doesn't attempt to produce full engineering designs of all the detector components, nor does it include production and testing of full detector prototypes. These are not imaginable with the present level of support. Rather it attempts to establish technical feasibility for key detector systems, conceptually engineered designs of detector subsystems, and proofs of principle of key engineering assumptions, in addition to an accurate rendition of detector and physics performance with a level of simulation detail previously unmatched in high energy physics proposals. This approach has consequences. Several systems may not reach full technical maturity by 2012. The vertex detector, which depends on ongoing sensor development and advances in powering and materials, likely won't be ready for a construction start in 2013. The same is true of the beamcal, which also depends on future sensor development, which may or may not be demonstrated in time. These are both small systems, the design of the overall detector is essentially independent of their details, and the world detector community is making impressive progress on both fronts. Feasibility can be established in both cases without full prototype demonstrations and there will be time, before the ILC construction start, to complete this work. But other detector subsystems must be demonstrated, because they determine the global design of SiD. The tracking systems and calorimeter systems are in this category.

In what follows, we first briefly review milestones and timelines for the individual SiD systems. Secondly, we review the resources needed to proceed with the plan, and the level of resources already secured. Finally, we make some brief conclusions.

II. Milestones and Timelines for SiD Subsystems

Detailed schedules are given below in Appendix I, beginning with an overview of the schedule. SiD is already developing its computing infrastructure to accommodate a fully realistic detector description and further developing track finding and particle flow algorithms to improve their performance and adapt them to the realistic simulation. Global detector parameters will be re-optimized, and the key engineering questions associated with the Hcal gap thickness, overall Hcal depth, absorber material, and support, will be answered. With that input, global parameters will be frozen, in roughly a year's time. Engineering designs for individual subsystems will be developed sufficiently that realistic descriptions can be added to the Monte Carlo simulation, and the newly optimized baseline geometry established in Geant4. Engineering and detector R&D will proceed for each subsystem, and key detector and engineering assumptions checked with limited prototypes. With Geant4 complete, subsystem performance can be studied, and physics and background events simulated and reconstructed for subsequent benchmarking studies.

System by system, the critical milestones are as follows:

- Vertex Detector. Sensor development will proceed with both the Chronopix and VIP sensors, with the goal of demonstrating a working sensor around the 2012/2013 timeframe. Conceptual engineering, and test of concepts, will proceed with vertex mechanical issues, leading to a feasible design of the sensor support structure, integration of cooling, powering, and data transmission. Work on pulse powering the vertex detector will be coordinated with the SiD Electronics group.
- **Tracker.** In collaboration with SiD Sim/Recon, tracking software will be improved, a Kalman Fitter implemented, tracker design optimized, and performance studies begun. Emphasis will be given to testing the SiD tracking sensor, and developing bump bonding techniques and kapton cable designs to

test the sensor with KPiX readout, eventually with the full KPiX 1024 chip. As with the vertex detector, work on pulse-powering the tracker will be done with the SiD Electronics group. Mechanical stability of the lightweight carbon fiber support cylinders, especially under power pulsing, will be investigated and measured. And alignment systems using frequency scanned interferometry will be further developed, and feasibility demonstrated.

- ECAL. In collaboration with SiD Sim/Recon, design optimization will be pursued, the realistic description of the detector developed, and performance studies initiated. With SiD Engineering, the mechanical design will be finalized and feasibility demonstrated. A mechanical prototype, testing the design concepts, will be built. Sensor R&D will proceed like that for the tracker sensor, including bump bonding, cable design, and integration with the KPiX readout chip. This will culminate in a single tower prototype in late 2011. In addition to the development of the Si pixel baseline design, work will proceed on the MAPS alternate technology.
- **HCAL.** The baseline RPC choice will be tested extensively with the CALICE collaboration in a cubic meter calorimeter presently under construction. In parallel, a technical prototype will be engineered, and construction details tested, to establish heal gap thickness, distribution of gas and HV, design of the ASIC readout, and chamber construction. In addition to the baseline, HCal alternate technologies using gas, namely GEMS and Micromegas, will be developed, and prepared for extensive beam testing. SiD will leave the development of the scintillator alternative to the CALICE collaboration, but will monitor progress, performance, and cost of this option.
- FCAL. With Sim/Recon, the measurement of the differential luminosity spectrum and the efficiency of the SUSY veto will be studied and quantified. With the SiD Engineering group, the beamcal and lumical designs will be finalized, and integrated with the beampipe and masking designs. Key mechanical assumptions will be tested empirically. In conjunction with the FCAL Collaboration, sensor technologies will be evaluated, and resources permitting, new options developed locally. Beamcal readout will be developed with the SiD Electronics group. Ideally, sensors will be prototyped and tested, radiation resistance evaluated, and final sensor designs suitable for the beamcal and lumical built and tested.
- MUON. Two candidate technologies, RPCs and scintillator strips, will be developed in parallel during 2010, leading to a baseline selection by mid-2011. Engineering of the flux return steel will be done so as to accommodate either design, and critical details of the designs developed in time for the detailed MC description. Critical R&D for the RPC's includes developing KPiX readout, performing lifetime tests, and developing and testing large technical prototype chambers. Scintillator R&D includes selection of a SiPM, development of the SiPM readout, and beam tests. With Sim/Recon, the baseline will be simulated and performance characterized.
- **ENGINEERING.** The SiD Engineering group coordinates and contributes to individual subsystem engineering design, and oversees detector integration issues, assembly, push-pull, MDI, and solenoid development in addition. Its

initial role will be to coordinate fixing the basic HCAL parameters, overall thickness, gap size, and absorber material, which will lead, along with input on optimization studies, to fixing the global dimensions of SiD's new baseline. There will be effort in parallel providing detailed designs for each of the subdetectors in time for the realistic Geant4 description to be developed. Critical features of these designs will be prototyped and tested. We plan to continue to work on the design of the solenoid, cryostat, and electrical and cryogenic supplies. This engineer doing this work is collaborating with the international group that is pursuing feasibility studies for large solenoids and developing new conductors. Engineering will also design the flux return iron, develop push-pull, support MDI work on vibration and support for the entire detector, and develop the beampipe design. Finally, the group provides project management for SiD, including developing a detailed project plan, document control and management, and cestimating and refining the cost estimate as the detector design advances.

- ELECTRONICS. SiD Electronics is developing readout and DAQ for SiD. Completing the development of the KPiX readout ASIC continues for the next two years, while ever larger versions of KPiX are submitted and tested, and designs refined. This will culminate in 2011 with production and test of the full 1024 channel KPiX. During the same time, the control, readout and timing boards that constitute the rest of the DAQ system will be developed and tested, following an architecture that has already been developed. The beamcal presents a unique readout challenge, and development work has already begun on a chip suitable for reading out rad hard detectors bunch crossing by bunch crossing. A final item, critical for the vertex detector and tracker, is the development of pulsed power delivery systems, which is already underway.
- **MDI.** The MDI group is closely coordinated with SiD engineering, and is working on two broad fronts. First, it is engaged in designing the beamline elements and alignment systems that will hold the inner quads, the beampipe and masks, and, in turn, the vertex detector/inner tracker support tubes. Understanding and controlling the vibrations of QD0, and providing the needed alignment systems, is a central task. Second, the group is developing and evaluating detector motion systems for push-pull, including the question of platform or no platform support for SiD and alignment after the push pull operation.
- **BENCHMARKING.** Key milestones include working with the SiD Sim/Recon group to improve the physics event generator and improve event generation and storage. Working with the Physics Common Task Group, SiD benchmarking will help in redefining benchmarks for both 500 and 1000 GeV running, and in developing new generators needed for physics studies. Also with the Sim/Recon group, benchmarking will help in generating the physics and background Monte Carlo data samples needed for the benchmarking exercise. Finally, starting about 2011, the group will reconstitute the SiD analysis team and begin analyzing fully simulated data for the Design Report benchmarking exercise.

• SIM/RECON. Work is already underway to adapt the simulation and reconstruction framework to accommodate a more realistic geometric description of SiD. So too are efforts coordinated with the tracking and calorimetry groups to improve the existing tracking and PFA reconstructions packages, and to adapt them to handle the new geometry. By mid-2011, the new SiD baseline must be encoded in the Geant4 description. This will proceed in close collaboration with the SiD subgroups. Once complete, the group's focus will change to physics event and background generation and reconstruction, and support of the physics benchmarking exercise.

•

III. Resources for the SiD Work Plan

In Appendix II below is detailed information about the resources needed to accomplish the effort and workplan outlined above and in Appendix I. We have defined the following categories: Staff, Postdocs, Engineers, Students and M&S. All people resources are in FTEs. Staff is in general for senior scientists, postdocs and students are self explanatory and engineers are mechanical, electronic and software engineers. We also have a category for M&S which is in k\$. We have listed the needs, as well as resources we feel are identified and funded. "Need" indicates what we feel is needed and "have" indicates what we feel is already identified as resources for SiD. The first Table shows a high level roll up of these resources simply summing them all for all of SiD. The second Table lists each subsystem/sub-effort and hwo it contributes to the overall resource need. For example in these tables there is a differentiation between mechanical, electronics and software engineers.

We arrived at these estimates by asking each subsystem to send us their estimate to be able to do the work outlined above and accomplish the milestones.

At first glance the resources required seem rather large, especially in the engineering category, with only about 50% identified. We feel that these estimates are somewhat on the high side. The estimates for postdocs are also high and only a quarter or less are identified. This also probably needs some refinement. In case of staff more then half of the needed resources are identified. Overall it is our feeling that these estimates will have to fine tuned and will result in smaller resources required.

Appendix I: Overview of milestones and time lines.

This information is available as a spreadsheet and this spreadsheet is included as part of the submission.

The first graph below shows the overall SiD milestones and schedule between now and the end of 2012. Typically the green bars indicate when work will be done and a milestone is at the end of the green bar.

	Year	2009		20	10			20	11			20	12	
	Task list	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	
	Overall Schedule													
	Work Plan													Í
	Develop Sim Infrastructure for													Í
	Realistic Detector Description													ĺ
	Optimize Detector Design													Í
	Engineering input for global params													
	Freeze Global Params													
	Define Subdetector volumes,													ĺ
Overall SiD	supports, services, deadspaces													
Schedule	SiD Baseline Geometry in G4													
	Subsystem Engineering Designs													Í
	and Proofs of Principle													
	Subsystem Performance Studies													í I
	Generate Physics and Backgrounds													
	Reconstruct Simulated Events													
	Analyze Benchmark Reactions													1
	Complete SiD Technical Report													

The very long graph below shows the SiD schedule for individual susbsystems.

	Year	2009		20	10			20	11			20	12	
	Task list	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	
	SENSOR R&D													
	Test VIP2b													
	Test Chrono1													
	Design VIP3													
	Test VIP3													
	Design Chrono2													
	Test Chrono2													
	Design Chrono3													
	Test Chrono3													
	Design Chrono 4													
	Test Chrono 4													
	Fabricate VIP/chornopixel													
	Fabricate ladder array													
	Power R&D with Electronics													
	Test LHC DC-Dc converter													
VTX	Test serial power scheme													
	Design pulsed power system													
	Fabricate pulsed power system													
	lest pulsed power system													
	Support D&D													
	Design support cylinder													
	Eabricate test cylinder													
	Measure test cylinder													
	Design vertex support													
	Eabricate test support													
	Measure test support													
	Thinned ladder R&D													
	Fabricate sample thinned ladder													
	Measure sample thin ladder													
	Design alignment monitoring		- I I				- 		I	I		1		
	Eab alignment monitoring													
	Test alignment monitoring													
	researgnment monitoring													

	Year	2009		20	10			20	11			20	12	
	Task list	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	
	With Sim/Recon Implement Kalman Filter Optimize tracker design Performance studies													
Tracker	Sensors/Readout Sensor Cable Delivered Bump bonding sensor Test Sensor+Cable+KPiX Test Sensor+1024 KPiX													
	Power R&D with Electronics													
	Mechanical Stability Evaluate impact of power pulsing Test vibrational stability of cylinders													
	Alignment with Vertex Continue development of FSI													

	Year	2009		20	10			20	11			20	12	
	Task list	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	
	With Sim/Recon													
	Ecal Optimization Studies													
	Model Ecal in Geant4													
	Ecal Reconstruction Softward													
	Performance Studies													
	With Engineering													
	Gap, support, assembly, service s													
	Module design													
	Build/test mechanical prototype													
ECAL														
	Critical R&D													
	Test prototype sensors													
	Develop bump bonding for KPiX													
	Develop cables for KPiX													
	Build and Test Single Sensor Tower													
	Alternate Technology Development													
	MAPS submission													
	MAPS testing													
1	MAPS stack assembly													
	MAPS testbeam													

Year	2009		20	10			20	11			20	12	
Task list	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	
RPC DHCAL Vertical Slice test analysis 1-glass design tests 1m3 electronics construction/checkout 1m3 RPC construction 1m3 in test beam													
1m3 analysis HCAL Technical prototype Gas circulation system prototype Gas circulation system tests Front-end ASIC design completed Front-end ASIC prototype tests Improved FE board design Improved FE board prototype tests HV distribution system prototype HV distribution system prototype LV system distribution system prototype LV system distribution system tests Design SiD RPC-HCAL													

	Year	2009		20	10			20	11			20	12	
	Task list	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	
HCAL Alternate	GEM DHCAL Complete characterization of GEM4 Operate GEM4 with 256-KPiX Understand GEM4 behavior with DCAL Finalize design 33cmx100cm unit ch Obtain/cert 33cmx100cm foils from CERN Begin const/char of 33cmx100cm unit Charact 33cmx100cm ch with DCAL Prodn of 15 33cmx100cm unit chambers Construct 5 100cmx100cm GEM planes Beam test GEM+RPC planes w/CALICE Analysis of 1m2 GEM+RPC data as 1m3 Develop GEM active layer design for SiD													

	Year	2009		20	10			20	11			20	12	
	Task list	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	
	With Engineering													
	Flux Return Design & Layout													
	Engineer baseline													
	RPC													
	KPiX Readout													
	Lifetime Tests													
	Test Large Chambers													
	Scint													
Muon	Select SiPM Candidates													
	Beam tests with 6m long strips													
	SiPM Testbeam Readout													
	Optics and strip R&D													
	Beam tests w/optics-strip R&D													
	Select Baseline													
	RPC Cost & performance													
	Scint Cost & performance													
	Selection													
	With Sim/Recon													
	Simulate Baseline													
	Performance studies													
	Prototype Baseline													

Year	2009		20	10			20	11			20	12	
Task list	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	
With Engineering													
Beamcal & Lumical Design													
With Sim/Recon													
Simulate in Geant4													
Performance Studies													
Forward													
Calorimetry Desirable Studies													
dL/dE measurement													
SUSY veto studeies													
Desirable R&D													
Evaluate Sensor Technology													
Design/Build Proto Sensor													
Test Sensor													
Rad test sensor													
Beamcal Readout													
Prototype beamcal/lumical petals													

Year	2009	2010		20	11	2012
Task list	Q4	Q1 Q2 Q3	Q4	Q1 Q2	Q3 Q4	Q1 Q2 Q3
Definition of Global Parameters (with ot	her s	ubgroups)				
Fix Hcal Thickness, Radiator, Gap						
Fix Global Dimensions			_			
Define all subdetector volumes						
Engineer Subsystem Designs (with sub-		l				
	roup	5)				
Ecal						
Ecal						
Muon						
Vertex						
Tracker						
Design Iron/Motion Systems						
Design Flux Return						
Develop Motion System						
Engineering Colonaid Design						
Cable Development						
Cable Development						
Solepoid concept drawings						
Solehold concept drawings						
MDI (with MDI subgroup)						
Understand vibration/stability issues						
Decide on Platform						
Understand push-pull issues						
Design Beam Pipe and Inner Systems						
Layout Cryogenic and Gas Systems						
Project Management						
Document and drawing management						
Detailed Project Den			I			
Change control						
Cost Estimation						
COSCESUMATION						

	Year	2009		20	10			20	11			20	12	
	Task list	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	
	Infrastructure Maintenance & Support													
	Improve Event Data Model													
	Implement LCIO													
	Implement Event generation													
	& Cataloging													
	Implement Improved Geometry Support													
	Adapt Reconstruction to Realistic Geom	etry												
Sim/Recon	Add planar tracking detectors													
	Add Billoir track fit													
	Realistic Cal Clustering													
	Adapt PFA to realistic calorimeter													
	Rebaselining SiD Design													
	Optimize Global Parameters													
	Implement new Baseline Geometry													
	Generate and Reconstruct MC Data													
	Simulate Physics and Beam Backgrounds													
	Reconstruct Events													

-	Year	2009		20	10			20	11			20	12	
	Task list	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	
	With Sim/ Recon													
	Improve Physics Event Generator													
	Improve Event Generation & Storage													
	Define New Benchmarks													
	Work with Physics Common Taks Group													
Benchmark	Event Generation with Sim/Recon													
	Simulate Physics & Physics and beam bkg													
	Analyze Physics Benchmarks													
	Analysis team setup													
	Physics Analysis Preparation													
	Analyze Fully Simulated Data													

-	Year	2009		20	10			20	11			20	12	
	Task list	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	
	КРіХ													
	Submit KPiX256													
	Test KPiX 256													
	Submit KPiX1024													
	Test KPiX 1024													
Electronics	Control/readout/timing boards Single string electronics available													
2.000.01.00	Develop Beamcal Electronics Submit test chip													
	Evaluate test chip													
	Submit full chip													
	Develp Power System													
	Preliminary design													
	Test Circuits available													

Year	2009	2010		2011			2012						
Task list	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	
Design Beamline Elements													
and Alignment Systems													
MDI													
Develop Motion/Support system													
for Push-Pull													

			Version 0.6				10/23/09		
			20	10	20	11	2012		
		SiD all	Need	Have	Need	Have	Need	Have	
		Staff	18.7	11.7	19.0	11.1	18.5	10.3	
		Postdoc	16.0	4.5	19.0	3.5	19.5	3.5	
Summary	SiD all	Engineering	16.0	7.9	16.0	7.8	13.5	6.8	
		Student	2.0	2.0	1.5	1.5	1.0	1.0	
		M&S(k\$)	1450.0	778.0	1270.0	453.0	1075.0	453.0	

Appendix II: Resources required and available.

			20	2010 2011		2012		
			Need	Have	Need	Have	Need	Have
		Staff	3	1.8	3	1.8	3	1.8
		Postdoc	2	0	2	0	2	0
SiD all	VTX	Engineering	0	0	0	0	0	0
		Student	0	0	0	0	0	0
		M&S(k\$)	410	225	380	200	330	200
		Staff	1.25	0.5	1.25	0.5	1.25	0.5
		Postdoc	0.5	0	0.5	0	0.5	0
SiD all	Tracker	Engineering	0	0	0	0	0	0
		Student	0	0	0	0	0	0
		M&S(k\$)	50	0	50	0	50	0
		Staff	2	1	2	1	2	1
		Postdoc	2	0	2	0	2	0
SiD all	ECAL base	Engineering	0	0	0	0	0	0
		Student	0	0	0	0	0	0
		M&S(k\$)	0	0	0	0	0	0
		Staff	2	2	2	2	1	1
		Postdoc	1	1	1	0	0.5	0
SiD all	HCAL-base	Engineering	0	0	0	0	0	0
		Student	2	2	1.5	1.5	1	1
		M&S(k\$)	400	400	100	100	100	100
		Staff	0.70	0.5	0.70	0.5	0.7	0.5
		Postdoc	1	0.5	1	0.5	1.00	0.5
SiD all	FCAL	Engineering	0	0	0	0	0	0
		Student	0	0	0	0	0	0
		M&S(k\$)	50	25	50	25	50	25
		Staff	2	1.25	2.5	0.25	2.5	0.25
0.0		Postdoc	2	0	2	0	2	0
SID all	Muon	Engineering	0	0	0	0	0	0
		Student	0	0	0	0	0	0
		M&S(K\$)	0	0	0	0	0	0
		Staff	0.5	0.5	0.5	0.5	0.5	0.5
CiD all	MDI	Fostdoc	0	0	0	0	0	0
SID all	MDI	Engineering	0	0	0	0	0	0
		Student	0	U	0	U	0	0
		NIQO(K\$)	0	U	0	0	0	0
		Stati	0	0	0	0	0	
SiD all	Electronince	Fostdoc	0	1.05	0	1.05	25	1.05
	Electronincs	Engineering	3	1.20	3	1.20	2.5	1.20
		Student	U	U	U	U	U	U

		M&S(k\$)	290	35	290	35	120	35
SiD all	Engineering	Staff Postdoc Engineering Student M&S(k\$)	0 0 10.95 0 150	0 0 5.65 0 45	0 0 10.95 0 250	0 0 5.55 0 45	0 0 9.95 0 275	0 0 4.55 0 45
SiD all	Sim-Reco	Staff Postdoc Engineering Student M&S(k\$)	3 2 0 0	2 1 1 0 0	2 3 2 0 0	2 1 0 0	2 3 1 0 0	2 1 1 0 0
SiD all	Benchmark	Staff Postdoc Engineering Student M&S(k\$)	0.2 1 0 0 0	0.1 0 0 0 0	1 3 0 0 0	0.5 0 0 0 0	1.5 4 0 0 0	0.7 0 0 0 0
SiD all	ECAL-maps	Staff Postdoc Engineering Student M&S(k\$)	2 1.5 0 0 0	1 1 0 0 0	2 2 0 0 0	1 1.5 0 0	2 2 0 0 0	1 1.5 0 0 0
SiD all	HCAL_gem	Staff Postdoc Engineering Student M&S(k\$)	2 2 0 0 100	1 1 0 0 48	2 2.5 0 0 150	1 0.5 0 48	2 2.5 0 0 150	1 0.5 0 48