## Beam pair-background in with SB2009 and RDR

Mikael Berggren<sup>1</sup>

<sup>1</sup>DESY, Hamburg

ILD meeting, Paris, 29 Jan 2010

Mikael Berggren (DESY)

Beam pair-background in with SB2009 and RI

January 29, 2010 1 / 15

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

### Outline

### Outline

- The SB2009 issues.
- Reminder: Beam-strahlung.
- Simulation.
- RDR  $\rightarrow$  SB2009
  - VTX
  - Other detectors.
  - BeamCal & LumiCal
- Conclusions.

This is all work-in-progress. Exact numbers might change.

< ロ > < 同 > < 回 > < 回 >

## The issues

- Positron source  $\rightarrow$  luminosity below 300 GeV.
- Larger incoming beam-energy spread at 500 GeV (but smaller at 250).
- Changes to  $BDS \rightarrow muon background$ .
- More beam-strahlung.

A commite set up by RD to communicate between the concepts and GDE on physics impacts. Chair Jim Brau. Members: T. Markiewicz,S. Boogert,T. Barklow, N. Graf, M. Thomson, K. Büsser, K. Fujii, D. Miller, A. Miyamoto, T. Maruyama, M.B.

Due to the very strongly focused beams, the fields (both E and B) has a large bending power on the other beam. Consequences:

- Primary beam is focused by the other beam.
- Strong bending  $\rightarrow$  much synchrotron radiation. Widens the distribution of the primary  $e^{\pm}$  energy.
- Photons
  - ... get Compton-backscattered  $\rightarrow$  photon component of beam, long tail to lower energies for the  $e^{\pm}$ .
  - ... interact with photons (synchrotron ones, or virtual ones) in the other beam  $\rightarrow e^{\pm}$ -pairs.
- So, there will be a component of  $e^{\pm}$  with the *opposite* charge to that of its parent beam.
- These gets de-focused: The pair background

Due to the very strongly focused beams, the fields (both E and B) has a large bending power on the other beam. Consequences:

- Primary beam is focused by the other beam.
- Strong bending  $\rightarrow$  much synchrotron radiation. Widens the distribution of the primary  $e^{\pm}$  energy.
- Photons
  - ... get Compton-backscattered  $\rightarrow$  photon component of beam, long tail to lower energies for the  $e^{\pm}$ .
  - ... interact with photons (synchrotron ones, or virtual ones) in the other beam  $\rightarrow e^{\pm}$ -pairs.
- So, there will be a component of  $e^{\pm}$  with the *opposite* charge to that of its parent beam.
- These gets de-focused: The pair background

Due to the very strongly focused beams, the fields (both E and B) has a large bending power on the other beam. Consequences:

- Primary beam is focused by the other beam.
- Strong bending → much synchrotron radiation. Widens the distribution of the primary e<sup>±</sup> energy.
- Photons
  - ... get Compton-backscattered  $\rightarrow$  photon component of beam, long tail to lower energies for the  $e^{\pm}$ .
  - ... interact with photons (synchrotron ones, or virtual ones) in the other beam  $\rightarrow e^{\pm}$ -pairs.
- So, there will be a component of e<sup>±</sup> with the *opposite* charge to that of its parent beam.
- These gets de-focused: The pair background

Due to the very strongly focused beams, the fields (both E and B) has a large bending power on the other beam. Consequences:

- Primary beam is focused by the other beam.
- Strong bending → much synchrotron radiation. Widens the distribution of the primary e<sup>±</sup> energy.
- Photons
  - ... get Compton-backscattered  $\rightarrow$  photon component of beam, long tail to lower energies for the  $e^{\pm}$ .
  - … interact with photons (synchrotron ones, or virtual ones) in the other beam → e<sup>±</sup>-pairs.
- So, there will be a component of e<sup>±</sup> with the *opposite* charge to that of its parent beam.
- These gets de-focused: The pair background

The wrong-sign  $e^{\pm}$ :s gets a maximum kick if they are at the outer edge of the beam.

The kick is independent of the (longitudinal) momentum of the particle.

 $p_T$  and  $\theta$  anti-correlates, and accumulate at the edge.

< ロ > < 同 > < 回 > < 回 >

The wrong-sign  $e^{\pm}$ :s gets a maximum kick if they are at the outer edge of the beam.

The kick is independent of the (longitudinal) momentum of the particle.

 $p_T$  and  $\theta$  anti-correlates, and accumulate at the edge.

To study the effect, also draw the detector in these coordinates:

Place it at the  $p_T$ - $\theta$  corresponding to the  $p_T$  and  $\theta$  a particle should have to turns back at the radius and z of the detector. Note that that means that the detector moves with the B-field !

## **Pairs simulation**

- Pairs generated by GuineaPig
- Beam-parameters:
  - SB2009 LowP with travelling focus. 213000/BX.
  - SB2009 LowP without travelling focus. 211000/BX.
  - RDR nominal. 124000/BX.
  - RDR LowP. 214000/BX.
  - Exact numbers might vary with GP settings !
- Full Mokka simulation for the tracking-aspects.
- For BeamCal: Stand-alone detector simulation or analytical transport both with Anti-DID & crossing-angle.

Work by A. Hartin, K. Winchmann, K. Yoshida, A. Miyamoto, O. Novgorodova, M. B. ...

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Pairs in ILD

## Pairs in tracker: SB2009-TF (no Xing angle, anti-DID)



Mikael Berggren (DESY)

-

### Pairs in ILD

## Pairs in tracker: RDR nom (no Xing angle, anti-DID)



Pairs in ILD

## Pairs in tracker: RDR LowP (no Xing angle, anti-DID)



Mikael Berggren (DESY)

Tracking

## Tracking: Hits in Vertex detector

- Full simulation (Mokka), with crossing-angle and anti-DID field.
- No reconstruction yet, just count hits.
- The ILD VTX integrates of a certain time-window → only half as many BX:es with lowP !
- SB2009 no TF = RDR nom; SB2009 with TF =  $1.3 \times RDR$  nom.
- Some issues about the absolute numbers (GEANT4 settings) to be ironed out. Relative should be OK.



Beam pair-background in with SB2009 and RI



January 29, 2010

10/15

Tracking

## Tracking: Hits in Vertex detector



Mikael Berggren (DESY)

Beam pair-background in with SB2009 and RI

## Tracking: Other detectors

## SB2009 TF and NTF

| detector    | LoI           | SB09 Low P NTF | factor | SB09 Low P TF | factor |
|-------------|---------------|----------------|--------|---------------|--------|
| SIT (den.)  | 0.017+-0.010  | 0.039+-0.022   | 2.3    | 0.046+-0.016  | 2.7    |
|             | 0.004+-0.0026 | 0.0088+-0.0030 | 2.2    | 0.013+-0.008  | 3.3    |
| FTD (den.)  | 0.0127        | 0.0240         | 1.9    | 0.031         | 2.5    |
|             | 0.0085        | 0.0170         | 2      | 0.021         | 2.5    |
|             | 0.0017        | 0.0036         | 2.1    | 0.0045        | 2.6    |
|             | 0.0018        | 0.0039         | 2.2    | 0.0050        | 2.8    |
|             | 0.0014        | 0.0027         | 1.9    | 0.0036        | 2.6    |
|             | 0.0008        | 0.0019         | 2.4    | 0.0026        | 3.2    |
|             | 0.0007        | 0.0018         | 2.6    | 0.0025        | 3.6    |
| HCAL (hits) | 8419 +-649    | 19998+-374     | 2.4    | 25020+-621    | 3      |
| ECAL (hits) | 155.0         | 386.0          | 2.5    | 501           | 3.2    |
| TPC (hits)  | 408.0         | 1026.0         | 2.5    | 1275          | 3.1    |
| SET (hits)  | 5.6           | 13.4           | 2.4    | 15.5          | 2.8    |
|             | 6.0           | 14.7           | 2.5    | 16.7          | 2.8    |

13.01.2010

VTX Hit Densities for Low P

3

イロト イポト イヨト イヨト

э

60

40

### BeamCal

- Only GP, but with crossing-angle and anti-DID.
- Both hit-densities (top) and energy-density (bottom) matters.
- The issue: can one still see a  $\approx$  250 GeV electron from a  $\gamma\gamma$ process over the pairs-background in SB2009TF (right, RDR nom left)?

Mikael Berggren (DESY)



э

10

Beam pair-background in with SB2009 and RI

## **BeamCal**

- Only GP, but with crossing-angle and anti-DID.
- Both hit-densities (top) and energy-density (bottom) matters.
- The issue: can one still see a  $\approx 250 \text{ GeV}$  electron from a  $\gamma\gamma$  process over the pairs-background in SB2009TF (right, RDR nom left)?
- Radius vs. Energy.
- SB2009TF extends 5 mm further, and has more pairs and more energetic ones.

Mikael Berggren (DESY)



January 29, 2010 13 / 15

-

## BeamCal

- Distribution of particle energy for r > 20 mm.
- Total energy in BeamCal per BX: 24 TeV for SB2009TF, 10 TeV for RDR nom.
- Number of particles per BX: 11500 for SB2009TF,5400 for RDR nom.
- Energy density vs Radius: SB2009TF has about twice at any given radius, and extends 5 mm further.
- All the relevant numbers double



Mikael Berggren (DESY)

Beam pair-background in with SB2009 and RI

January 29, 2010 14 / 15

## **BeamCal**

- Distribution of particle energy for r > 20 mm.
- Total energy in BeamCal per BX: 24 TeV for SB2009TF, 10 TeV for RDR nom.
- Number of particles per BX: 11500 for SB2009TF,5400 for RDR nom.
- Energy density vs Radius: SB2009TF has about twice at any given radius, and extends 5 mm further.
- All the relevant numbers double



< E

## **BeamCal**

- Distribution of particle energy for r > 20 mm.
- Total energy in BeamCal per BX: 24 TeV for SB2009TF, 10 TeV for RDR nom.
- Number of particles per BX: 11500 for SB2009TF,5400 for RDR nom.
- Energy density vs Radius: SB2009TF has about twice at any given radius, and extends 5 mm further.
- All the relevant numbers double



< 🗇 🕨

- Distribution of particle energy for r > 20 mm.
- Total energy in BeamCal per BX: 24 TeV for SB2009TF, 10 TeV for RDR nom.
- Number of particles per BX: 11500 for SB2009TF,5400 for RDR nom.
- Energy density vs Radius: SB2009TF has about twice at any given radius, and extends 5 mm further.
- All the relevant numbers double

3

- Distribution of particle energy for r > 20 mm.
- Total energy in BeamCal per BX: 24 TeV for SB2009TF, 10 TeV for RDR nom.
- Number of particles per BX: 11500 for SB2009TF,5400 for RDR nom.
- Energy density vs Radius: SB2009TF has about twice at any given radius, and extends 5 mm further.

Detailed full simulation is on-going @ DESY-Zeuthen. (Some examples follows) The implications for the fundamental question on electron-tagging by this doubling will therefore be clarified soon.

< ロ > < 同 > < 回 > < 回 >

• All the relevant numbers double



FCAL-meeting, Geneva 21-22.10.2009



50 GeV: R-Phi – have a good probability after 6 ring, for the square segmentation after 5-th ring.

250 GeV: R-Phi – have good probability after 3 ring, for the square segmentation after 1th ring.



50 GeV: R-Phi after 6-th ring and for square segmentation only after 5-6-th rings. 250 GeV: R-Phi – for inner rings Edep(sHEe) < 3RMS up to 3 ring, for the square segmentation only after 3-4-th rings.

# Simulation Studies, impact of SB2009



Background in LumiCal is enhanced

- Higher occupation,
- more (useless) data to read out

needs to be studied!

January 28, 2010

ollaboration

**ILD** meeting Paris

#### Conclusions

## Conclusions

- As far as the geometry of the cone is concerned, SB2009-TF  $\approx$  RDR-nom, but:
  - More pairs.
  - More energy.
- However, only half as many BX:es/time → VTX, TPC sees very similar number of hits.
- Other single-BX read-out detectors have comfortably low levels. Possible exception: FTD.
- Twice as many pairs within almost the same radius in the BeamCal, and higher energies: How much will tagging suffer ?
- Full simulation of BeamCal and LumiCal with SB2009 is going on.