ILD and Background

Mark Thomson University of Cambridge

This talk:

What was done for the Lol
The issues
What now?

• What was done for the Lol

Background: TPC

- **★** Simulated 2000 bunch crossings (BXs) of beam background
- **★** For TPC, conservatively take drift velocity to be 4 cm μ s⁻¹
- **★** Therefore fill TPC with 150 BXs of background shifted in z
- **★** First order attempt to merge unresolvable hits
- **★** Superimpose on fully-hadronic top-pair events at 500 GeV

- Large fraction of hits from low energy electrons/positrons from photon conversions
- **★** Form tight helices, "micro-curlers", along length of TPC
- Background concentrated on relatively few TPC readout pads
- **★** Developed PatRec software to identify and remove "micro-curlers"

★ Effective removal of large fraction of background hits

	Top (p _T >1 GeV)	Background
Raw hits	~8,600	~265,000
After	~8,500	~3,000

★ By eye – clear that this should be no problem for PatRec

- ★ Superimpose 150 BXs TPC background on $e^+e^- \rightarrow t\bar{t} \rightarrow 6$ jets ★ For 100 events, NO loss in track-finding efficiency observed
- ★ Similar story for 3x nominal background, although some software issues....
- ★ Claimed a clear demonstration of the robustness of a TPC operating in nominal RDR ILC beam conditions

Background: VTX

- ★ Background in VTX detector complicated by assumptions for Si pixel readout rate
- ★ IF one assumes single BX tagging capability then background is not an issue
- ★ For ILD studies "conservatively" assumed 30 µs / 125 µs integration times for VTX layers (0,1) and (2,3,4,5) respectively
- ★ Therefore VTX integrates over 83/333 BXs
- **★** Superimposed backg. on fully-hadronic top-pair events at 500 GeV

⇒ 200,000 background hits per event !

 Also consider finite cluster size of background hits (~10 pixels)

★ Significantly increases occupancy ____

	layer	Occ.
	0	3.3 %
-	1	1.9 %
	2	0.4 %
	3	0.3 %
	4	0.08 %
	5	0.06 %

Background: VTX - fake tracks

- Combinatorics produce fake "ghost" tracks
- ***** In addition there are some real electron/positron background tracks
- ★ Large combinatoric background challenges pattern recognition
- ★ Reconfigured current algorithm (not ideal)
- **★** From 83/333 BXs overlayed on $e^+e^- \rightarrow t\bar{t} \rightarrow 6$ jets :
 - reconstruct ~34 "ghost" tracks/event (~1/3 are genuine)
- **★** Rejected by requiring at least 1 SIT hit or >10 TPC associated hits

Left with ~0.5 GeV per event (mixture of real tracks/combinatorics)

Background: VTX – tracking efficiency

★Two effects potentially reduce tracking efficiency:

- VTX pattern recognition
- Occupancy assume physics hits next to background clusters lost —

- + superimpose 83/333 BXs VTX background
- + apply SIT/TPC BX-tagging requirements

NOTE:

- **★** Care needed in interpreting efficiency results
- Will get different results depending on denominator e.g. if calculate efficiency for tracks with >100 TPC hits, the efficiency will be 100 %
- Produced results for:
 - all charged particles with p_T >1 GeV and N_{VTX}+N_{SIT} > 4
 - as above, but for charged particles which reach the TPC (i.e. in MC leave at least 1 TPC hit)

★ Background mainly affects reconstruction of low p_T tracks

• p_T > 1 GeV: efficiency reduced by 0.1 %

★ For charged particles which reach TPC (i.e. don't decay/interact)

p_T > 1 GeV: efficiency = 99.9 % in presence of background

Nominal ILC background not a major problem for ILD concept

Impact in a physics analysis

- Given limited time it was not possible to superimpose full 83/333 BX in VTX, 150 BX in TPC and 1 BX in SIT on physics events
 - CPU resources too large with current pattern recognition code
- **★** TPC track finding shown not to be an issue
- **★** Ghost tracks unlikely to be important for $ZH \rightarrow \mu\mu X$
- Only considered possible loss of hits due to occupancy in VTX
 - could degrade momentum resolution fast to simulate...

Background: flavour tagging efficiency

***** Simulated effect of VTX occupancy on flavour tag

expected to be main contribution due to LCFIVertex track quality cuts

Essentially same performance But again, only killing hits... may not be the full story

What are the issues?

Quite a few ...

Issue #1: Background assumptions

- **★** Used nominal RDR 500 GeV background levels
 - Need to design for 1 TeV
- ★ For a TDR (although we're not there yet), also need to build in safety factor ~ x10 ?
- ★ Not clear that ILD could withstand this
- ★ Software certainly can't

Issue #2: Two photon background

★ Did not include "two photon" background $e^+e^- \rightarrow e^+e^-q\overline{q}$

 may not be a problem, but needs study, e.g. see CLIC experience...

Two-photon → hadrons background at CLIC

★ NOTE: integrated lumi in 1 CLIC BX ~ integrated lumi in 1 ILC BX
 ★ For ILC, cross-sections smaller and p_T of particles lower
 ★ BUT in ILD must consider VTX/TPC integration times

Issue #3: Software

- ★ Background studies stressed our software to breaking point and beyond:
 - Heritage F77 TPC PatRec software struggled with 3x nominal
 - Silicon tracking (VTX/SiT) ground to a halt
 - got around this by ignoring inner layers for track seeding
 - but still very slow
 - Ignored background in FTD is efficient PatRec possible in the current design with background ?
- **★** Also used simplistic description of SiT/FTD strips
 - stereo strips not simulated
 - hits just treated as Gaussian 2D space points
 - clearly neglects potential reconstruction effects, ghosts etc.
- **★** No pixel pattern recognition in VTX (although realistic parameterisation)

Reconstruction software development is <u>essential</u> But, do not underestimate, this is a major effort !

Issue #4: BX tagging

- **★** Bunch-crossing ID in background studies rather simplistic
 - Use associated SIT hit (assume single BX time stamp)
 In practice, may not be so simple, strip reco?
 - Or if have associated TPC hits, assume this gives unique time-stamp
 - reasonable? TPC drift distance ~1-2 cm/BX
 - Nothing done for FTD tracks
 - Nothing for Calorimeters for two photon background time-stamping likely to be important for neutrals
- **★** To progress, needs software development
 - timing currently not fully integrated into sim./reco.

Issue #5: "System Test"

★ For Lol studies, factorised several effects:

- VTX inefficiency due to background clusters
- Ghost tracks
- TPC background
- ★ Reasonable approach (particularly given time), but difficult to convincingly assess potential physics impact, e.g. flavour-tagging
- ★ Would like a full simulation of all effects

Maybe other issues, suggestions/comments?....

B What Now?

Significant holes in our understanding of impact of background in ILD

★ Need to decide what to do and how to move forward...

Comments?