Status and plans of reconstruction and core software tools summary from software pre-meeting

Frank Gaede

DESY

ILD Meeting

Paris, Jan 28-30, 2009

detector R&D plan for DBD 2012

Guideline for the Plan of the detector groups

- 1. Continue R&Ds on critical components to demonstrate proof of principle
- Define a feasible baseline design
 (Options may also be considered. But one of them should be proven to be feasible.)
- 3. Complete basic mechanical integration of the baseline design accounting for insensitive zone (such as support structure, pipes, power lines
- 4. Develop a realistic simulation model of the baseline design, including faults and limitations

- in getting the software ready for the DBD 2012 we need to address pts. 4. and 7./8. of RDs roadmap!
- ILD software groups also has made plans for software!

Guideline (cont'ed)

- groups

 Develop a push-pull mechanism working with relevant
- 6. Develop a realistic concept of integration with the accelerate. Including the IR design
 - 5%: with GDE's BDS group through the MDI group
- 7 Simulate and analyze benchmark reactions, which can be updated
- Simulate and analyze some reactions at 1 TeV, including realistic higher energy backgrounds demonstrating the detector performance.

8&9: Based on the work of the Physics Group and Software group.

The reaction will be chosen to show the strength of ILC compared to other facilities.

slide with plans shown at last ILD meeting in Albuquerque 09/2009:

Plans for ILD software

- at Cambridge decided to move towards common ILD software framework - developed plans in
- (bi)weekly ild-sw-mgmt meetings
- dedicated ILD software workshop in Tsukuba 2009
- bi-weekly software WG meetings:
 - merge goodies from JSF into framework
 - develop a test system
 - develop new GRID production system
 - improve the geometry description
 - improve the reconstruction (tracking & PFA) man power is critical
 - develop LCIOv2
 - improve the simulation

- almost all planned topics are addressed already
- (test system to follow soon)

timeline for ILD software development

5 month	Analysis and Writing		
t0 - 5m	Monte Carlo production finished		
5 month	Grid Production		
t0 -10m	start Monte Carlo production	13	
3 month	Test, Debug and release ILDsoft		
t0-13m	freeze ILDsoft development		
>1 month	implement baseline in simulation		
t0-x	evaluate technology options develop tracking package develop geometry LCIOv2 improve simulation realism improve reconstruction study machine backgrounds	~20 month	

13 months prior to hand in of DBD are **fixed**

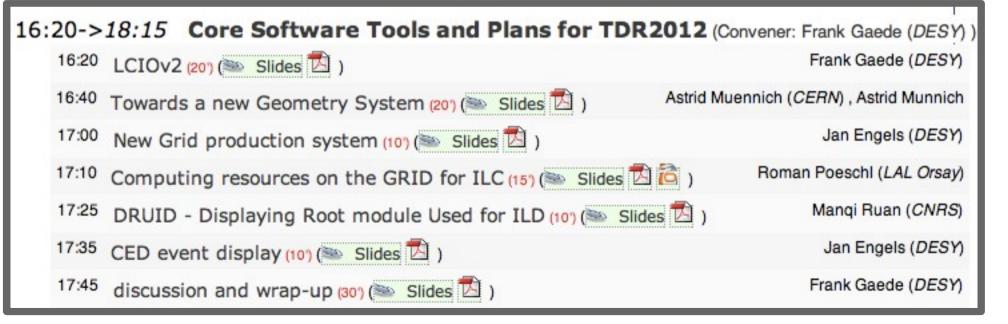
t0 will be end of 2012
-> have 20 month for software development

- -> this is less than it looks, given the large number of topics to be addressed
- -> need to define timeline and milestones

ILD software pre-meeting - agenda

```
14:30->16:00 Status of ILD Reconstruction Tools (Convener: Akiya Miyamoto (KEK) )

14:30 LCFIVertex status and plans (15) ( Slides ( ) ) Tomohiko Tanabe (University of Tokyo)

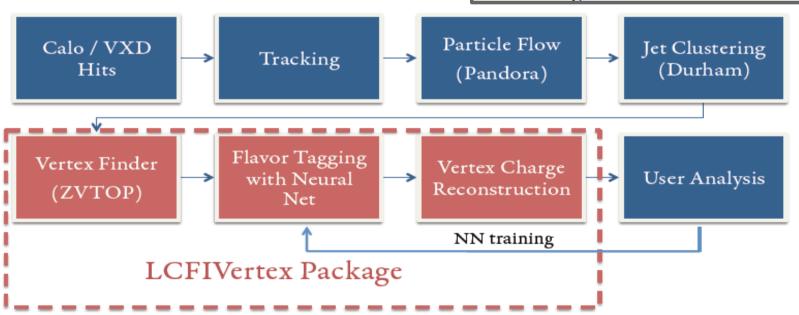

14:45 PandoraPFA status and plans (15) ( Slides ( ) ) John Marshall (UCam)

15:00 Photon shower reconstruction with Garlic (15) ( Slides ( ) ) Jean-Claude Brient (LLR)

15:15 Tracking status and plans (15) ( Slides ( ) ) Steve Aplin (DESY)

15:30 test beam software - Calice (15) ( Slides ( ) ) Angela Lucaci-Timoce (FLC, CALICE, DESY)

15:45 testbeam software - TPC (15) ( Slides ( ) ) Katsumasa IKEMATSU (KEK/IPNS)
```



LCFIVertex I

T.Tanabe

Task	Assignment
Jet Clustering / Flavor Tagging	T. Suehara, T. Tanabe
Parton Charge Identification	(TBD)
LCFIVertex Validation	Y. Takubo
Coordination	H. Ono, A. Miyamoto
FPCCD Digitizer	K. Yoshida, Y. Takubo

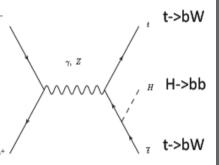
LCFIVertex Tasks

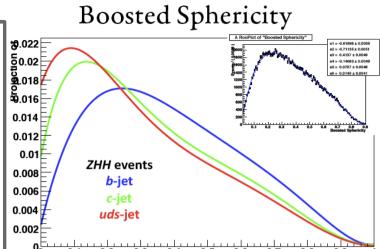
- fundamental improvements
 - jet-clustering, flavor-tagging
- impact on detector optimization
 - parton charge identification
 - (performance check using beam background)
- maintenance work
 - validation of LCFIVertex results when other code changes

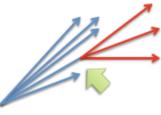
 strong japanese group took over responsibility for LCFIVertex from original authors (LCFI,UK)

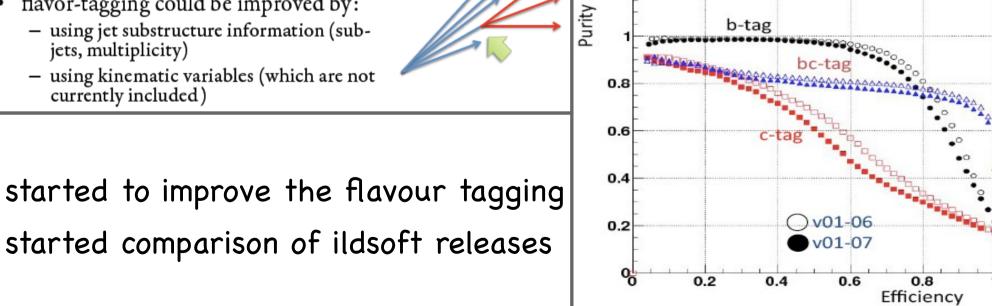
LCFIVertex II

T.Tanabe

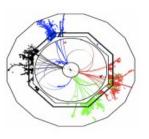

Jet Clustering & Flavor Tagging

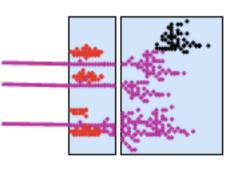

- many important analyses use ≥6 jets (e.g. ZHĤ, ttH)
 - improvement in jet-clustering/flavortagging is essential in order to achieve the target precision
- jet-clustering could be improved by:
 - use of vertex information


11 D Meetina Paris 27-30 01


rank Gaede,

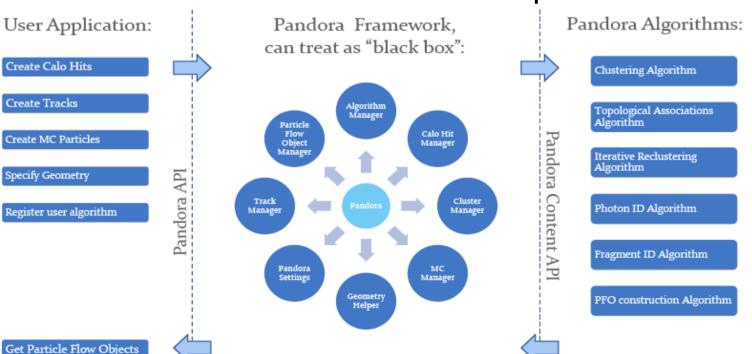
- physics-motivated jet finding (mass-like constraint)
- flavor-tagging could be improved by:
 - using jet substructure information (subjets, multiplicity)



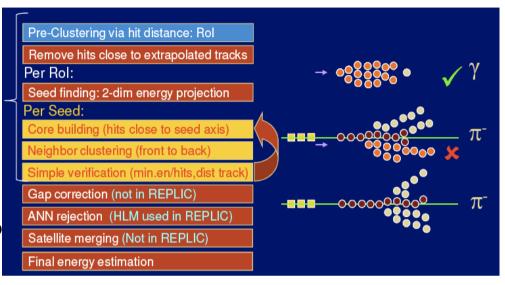

Boosted Sphericity

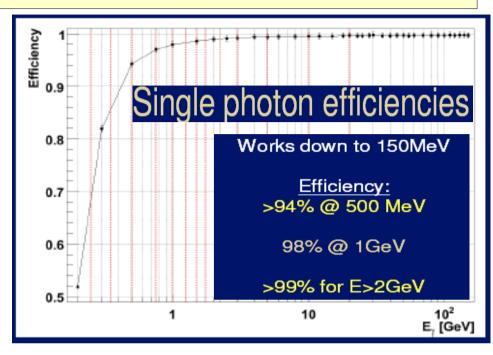
PandoraPFA

J.Marshall



Redesign of Pandora PFA

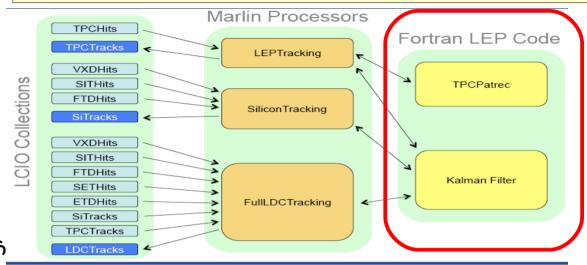

E _{JET}	σ _E /E (rms ₉₀)	
45 GeV	3.7 %	
100 GeV	2.9 %	
180 GeV	3.0 %	
250 GeV	3.1 %	

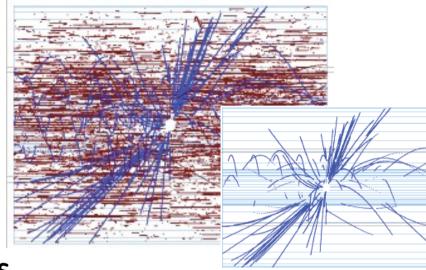

- Pandora most mature PFA todate
- PandoraPFA re-written in detector independent way
- re-implementation of PandorPFO marlin processor underway
- various improvements under development

Garlic photon reconstruction

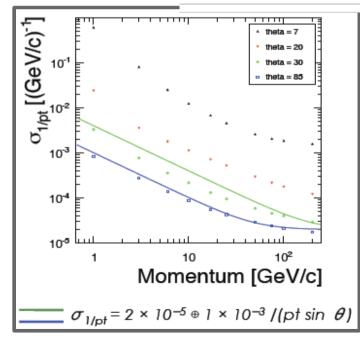
JC.Brient

tau reconstruction


[%]	π^{sim}	$ ho^{sim}$	$\left a_1^{sim} \right $
π^{rec}	95.9	2.8	0.6
$ ho^{rec}$	3.9	90.8	11.2
a_1^{rec}	0.1	6.1	86.8
not identified	0.1	0.3	1.4


It was about 70 – 75 % in ALEPH

- Garlic: standalone photon reconstruction
- available as MarlinProcessor
 - to be released soon
- could be included in PandoraPFA (how?)
- to be used for Ecal optimization

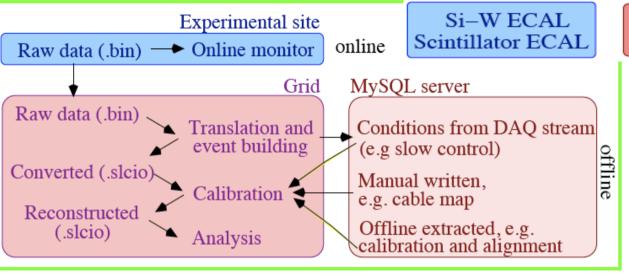

Tracking/PatRec

S.Aplin

- current tracking used for LOI process
- required p_t resolution reached
- also in present of backgrounds (even bg*3)
- issues:
 - ff7: maintenance 'nightmare' !
 - homogeneous B-field only!
 - difficult to use witch backgrounds
 - only single BX reconstruction
 - issues at 1–3 TeV
 - no strip tracking (ghost hits)

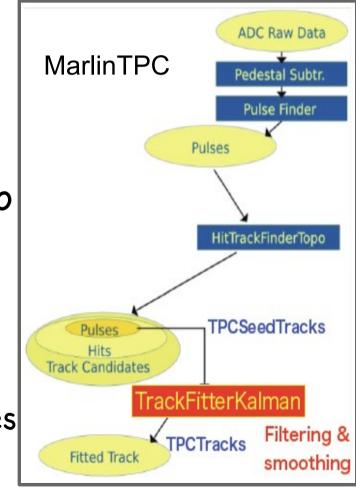
-> need for a new tracking package

new Tracking/PatRec

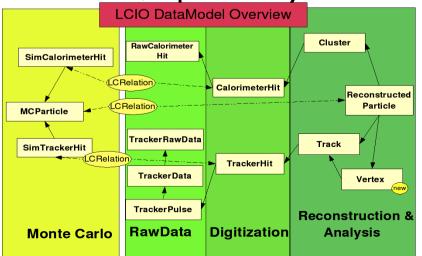

- started to look into ATLAS tracking code - full featured modern PatRec:
 - (combinatorical) Kalman Filter
 - Gaussian Sum Filter, DAF,...
 - modular design
- hoped for simple integration into Marlin however
 - rather tight coupling to GAUDI and Athena frameworks
 - algtools, DataVec, logging,...
- further evaluation needed
 - some support from CERN/LHC
- onclude by march 2010...

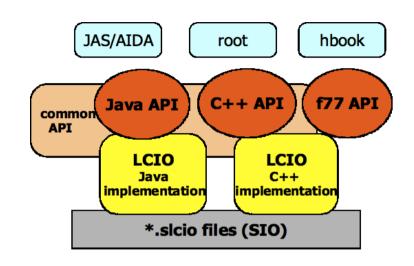
- developing a new tracking system is (one of)the biggest project(s) in ildsoft for the DBD phase!
- what can be achieved on this timescale depends on
 - the available effort
 - the priorities/timeline of ILD wrt. the software tools
- 'Plan B': continue with LepTracking through DBD phase and develop new tracking at lower priority

testbeam software (calice, TPC)


Calice Data Flow

A.Lucaci, K.Ikematsu

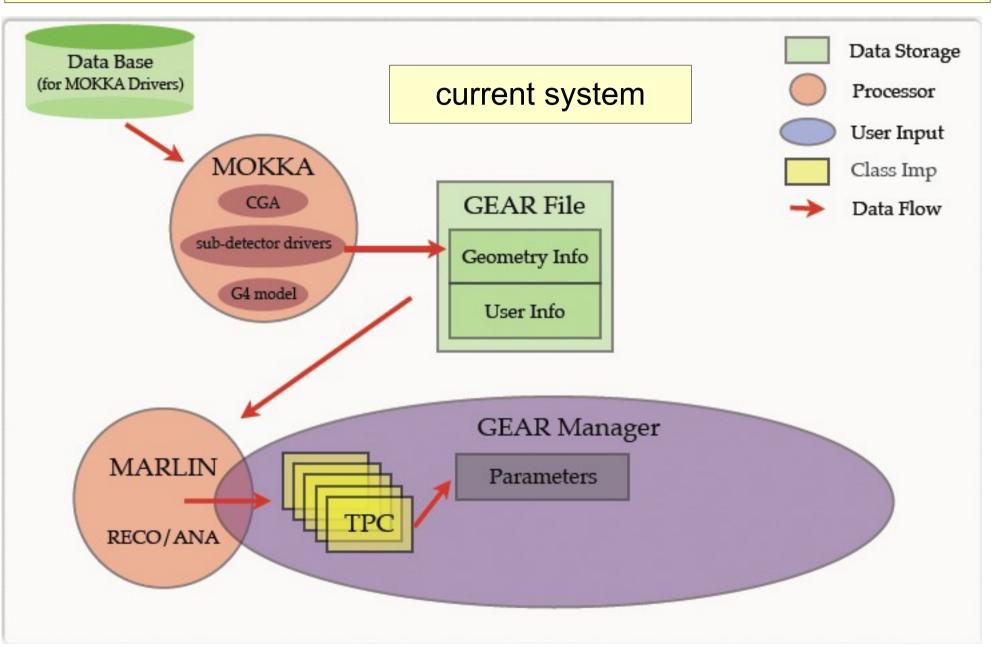

AHCAL RPC-DHCAL TCMT


- the complete ildsoft framework is also used by most testbeam programs
- provides synergies:
 - · can collaborate, e.g. on Kalman Filter
 - users can switch between ILD & prototypes
- also need some effort for testbeam specific developments, e.g. LCCD

LCIO v2

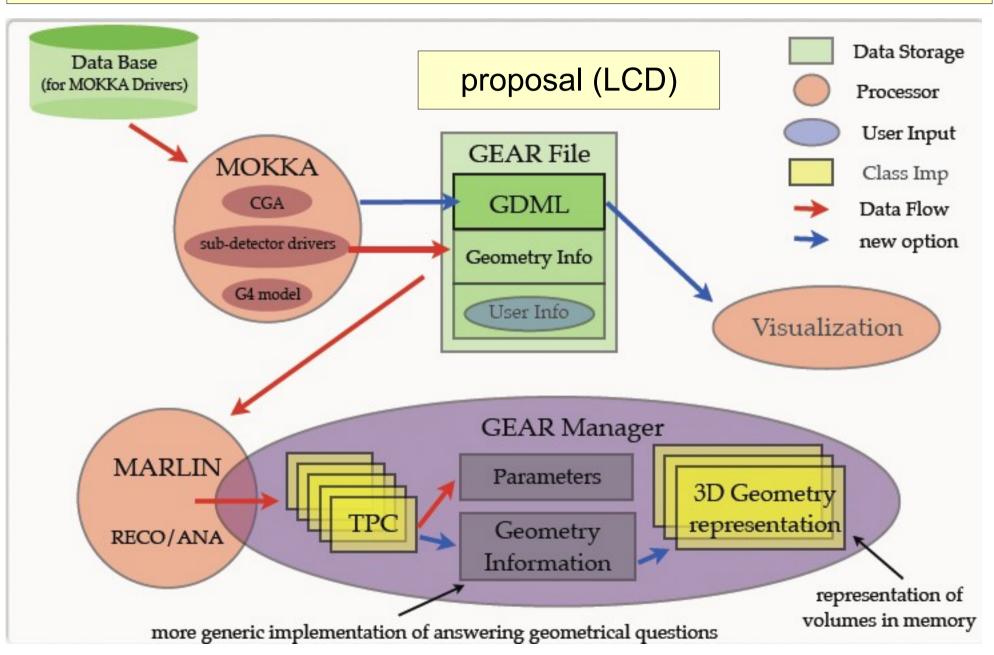
- LCIO provides a hierarchical event data model and a persistency solution (I/O) for LC software
- used in ILD and SID (and LCD)
 software frameworks and in most
 ILC testbeam experiments
- >150 TB of real and simulated data exist
- need to evolve keeping backward compatibility

- features under development:
 - direct access to events
 - partial reading of events
 - splitting of events over files
 - storing of (arbitrary) user classes
 - use LCIO with ROOT (ROOT macros, TTreeViewer, I/O,....)
 - improving the event data model (1d,2d hits, tracks/trajectories)

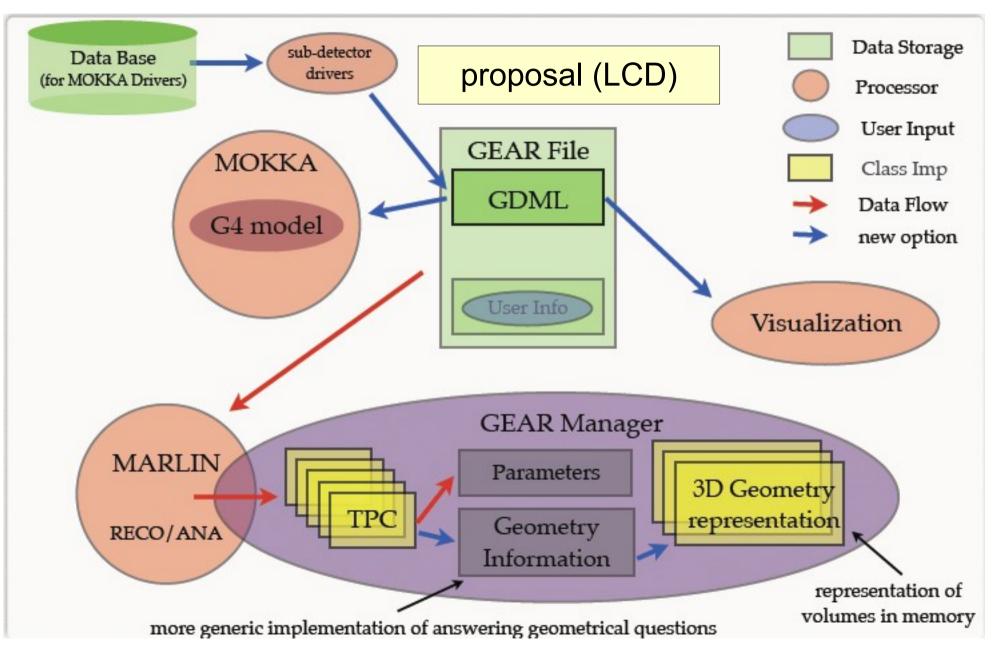

LCIOv2 development

- investigate LCIO & ROOT
 - experimental code branch with ROOT I/O exist
 - could use ROOT I/O as option to SIO (*.slcio)
 - some changes to existing classes
 - need further development
 - need to solve I/O for JAVA
 - released LCIO v01-12-01 with optional ROOT dictionary:
 - can use LCIO classes in ROOT macros
 - can write simple LCIO-ROOT trees and use TTree::Draw()

- implement new features in current SIO version of LCIO:
 - direct access
 - prototype in Java exists
 - partial reading and event splitting over files
 - have C++ index based pointers
 - SLAC working on 1d, 2d tracker hits and improved Track class
- continue successful collaboration with SID colleagues!


current geometry system

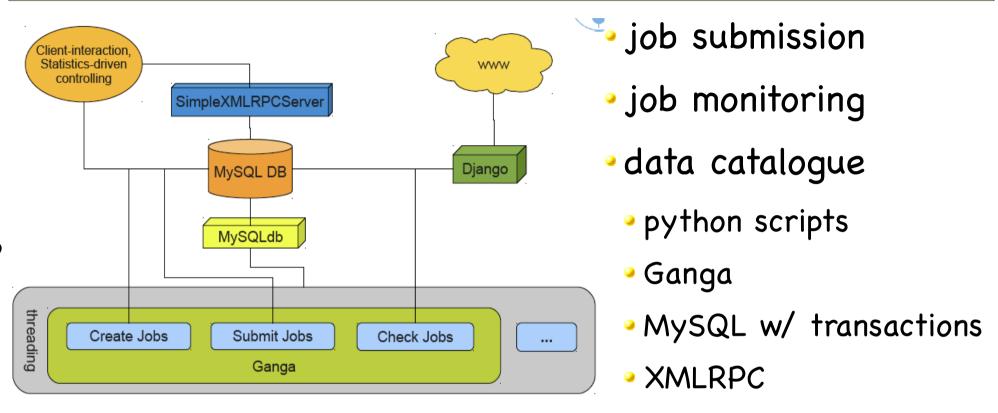
A.Muennich


new geometry - step 1

A.Muennich

new geometry - step 2

A.Muennich



developing a new geometry system

- the current geometry system needs to be improved
- a new system should be easier to use, more flexible and less error prone (user defined parameters, multiple sources,...)
- ideally have one source of geometry that feeds into full simulation, reconstruction, analysis and event display at the various levels of detail and should:
 - describe the detailed realistic geometry of the detector
 - sensitive and dead material
 - allow for miss-alignment
 - convert local-to-global coordinates (cellID <-> position)
- as all software tools are affected, we need to have further discussions and iterations on the topic between ILD/LCD/SFT
- process has started
- note: in AIDA Workpackage 2 this would be addressed

new Grid production system

J.Engels

- realized in LOI mass production that current system did not scale to O(10k) jobs (expert only system)
- new system will be easier to use (share production) and more efficient
- need a test production soon
- also look into using DIRAC with LCD group

Grid resources for ILC

R.Poeschl

DESY, Frank Gaede,

Ressources in Germany

National Contact: Frank Gaede (?)

Two major sites: DESY-HH and DESY-Zeuthen DESY-HH is the center of ILC computing

all ilc simulation files and calice data are residing there!!!

```
For storage (DESY-HH):

ilc-tape:
88Tb

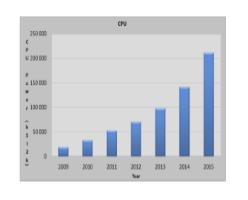
ilc-disk-pools:
70Tb (12Tb - disk-only, generated)

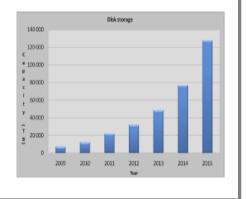
calice-tape:
45Tb

calice-disk-pools:
50Tb (15Tb - disk-only, generated)
```

CPU: 5kHEPSPECS

For storage (DESY-Zeuthen)

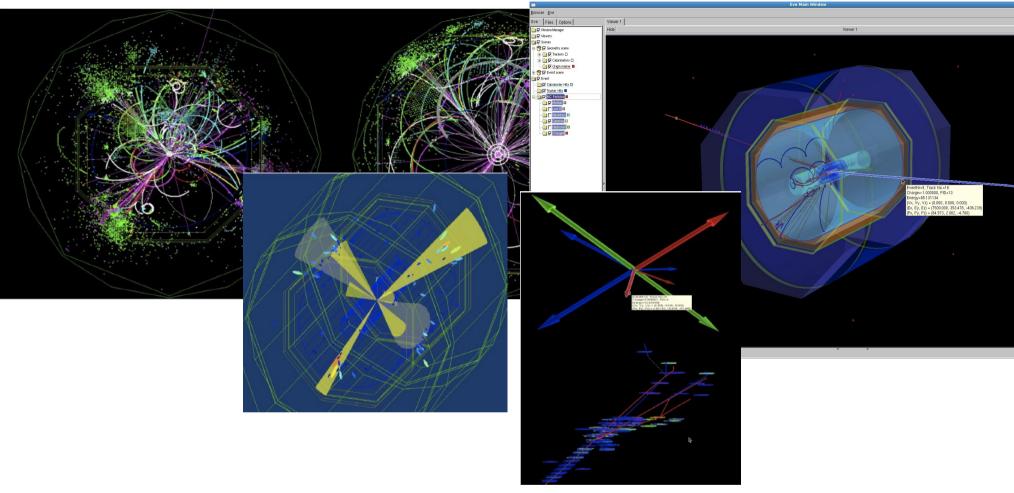

ilc/calice-tape:
No tape


ilc/calice-disk-pools: 25Tb (ou of 50 Tb)

CPU: 0.8kHEPSPECS

Development of cc in2p3 until 2015

- >~40 groups with standard requirements (among which ilc)
 Typical in2p3 policy is that non LHC groups get 20% of ressources
- ▶ Takes LHC commitment into account
- LHC upgrade
- Significant increase of needs from astroparticle community



- significant Grid computing resources (CPU&storage) provided by DESY and CC/in2p3 and Grid sites in UK
- typically growths will follow that of LHC-Grid
- probably enough resources available for 2010/2011
 - need to arrange for 2012

event displays

M.Ruan, J.Engels

- (at least) two event displays available for ILD:
 - CED (GLUT/OpenGL, very fast, client server, no GUI,...)
 - DRUID (ROOT based, GUI, picking,...)
- · can we 'downsize' to one ILD event display?

towards a timeline for software

- the ILD Software Working group and friends is addressing quite a number of topics in order to improve the software tools
 - task list identified and discussed in software working group
- manpower is limited and we need to prioritize and understand the requirements in order to define a timeline and milestones
 - biggest single task: new tracking system
- need input from and discussion with ILD and R&D groups
 - -> some questions to be answered

Questions

- what level of realism is needed in subdetector simulation/digitization?
 - to be defined by R&D groups and ILD
 - · very realistic frozen model vs. flexible scaling model
 - effects on reconstruction to be clarified (Si-strips/ghosts)?
- how to deal with technology options in simulation?
 - physics benchmarks vs. detector performance
 - do we have the reconstruction/digitization (dHcal, FPCCD) ?
- when do we need more sophisticated tracking ?
 - already for DBD ? at what level ? ('plan B')
- which physics/optimization studies in 2010/11?
 - need a running version of the full ILD software at all times !?
- need answers to define timeline