Analog HCAL R&D

Frank Simon MPI for Physics & Excellence Cluster 'Universe' Munich, Germany

for the CALICE Collaboration

ILD Workshop 2010 Paris, January 2010

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Outline: Issues under Study

- Technology: Proof of Principle
- Test beam validation of simulations
- Feasibility of integration
- Full detector simulation and reconstruction

Proof of Principle & Validation

Exploiting the Physics Prototype

Proof of Principle: Technology & Long-Term Behavior

Based on the successful operation of the physics prototype \bullet

38 layer analog HCAL Scintillator-Steel I m³ instrumented test beam campaigns DESY, CERN, FNAL 2006-2009

7608 scintillator cells with SiPM readout: First large scale detector with SiPM technology!

Proof of Principle: Technology & Long-Term Behavior

Based on the successful operation of the physics prototype

38 layer analog HCAL
Scintillator-Steel
I m³ instrumented
test beam campaigns
DESY, CERN, FNAL
2006-2009

Analog HCAL R&D

ILD Workshop 2010

- stable performance over several beam periods, including intercontinental shipping
- no indication of substantial ageing or performance changes, problematic channels on the per-mille level
- ~ 2% dead channels due to initially bad soldering, broken connections, ...: fixed in new design!

Proof of Principle: Calibration

- Well-established and well-tested calibration procedure:
 - self-calibrating feature of SiPMs for gain determination, overall cell response with minimum-ionizing particles

 Transportation of calibration coefficients from FNAL to CERN data tested successfully: "Simulation" of a complete calibration strategy with pre-installation module test in beams, and only a layer-wise global adjustment after installation

Validation: Electromagnetic Response

• Already a high degree of detector understanding in simulations, demonstrated with electromagnetic data

- Work under way to further improve the detector simulation, in particular the digitization: focus on the treatment of noise, cross talk, saturation
- Important for a realistic simulation of a full ILD Calorimeter

Validation: Hadronic Showers

• Detailed studies of shower profiles: Comparison to a variety of physics lists

 Mean shower radius as a function of energy Longitudinal profile, measured from shower start point

• Close collaboration with Geant4 developers to further improve hadronic physics lists

Validation: Shower Separation

- Separation of showers crucial for PFA performance
- First study with two overlayed showers and simple PFA-like clustering

Efficiency for correctly reconstructing the neutral particle with an energy within 3 σ as a function of shower distance

 Currently only very small distances due to available data set

• Expansion to PandoraPFA currently in progress

Validation: Hadronic Energy Resolution

- Energy resolution for hadronic showers in the complete CALICE setup: ECAL, HCAL, TCMT
 - Use of a simple software compensation technique to improve resolution and linearity Energy [GeV]

- Expansion of compensation studies
- Detailed comparisons to simulations with a variety of physics lists in preparation

30

40

50

20

10

60 70 80 90 beam Energy [GeV]

CALICE Preliminary

Linearity of detector response

single weights

energy dependent

80

70⊢

60 ·

50

40

30

20

10

0.1

- E_{beam})/E_{beam}

(Erec -0.

reconstructed

Integration

Towards a 2nd Generation Prototype

The Second Generation

- Towards a scalable and compact detector
 - Realistic design:
 - Dead spaces, tolerances
 - Costing
 - Embedded front end ASICS
 - Mechanical structure with minimum dead space
 - Options for scintillator and photosensor integration
- Technical challenge:
 - Stability with power pulsing and online zero suppression

detector interface electroni modules DIF, CALIB and POWER

The Second Generation: Active Layers

compact layers: 3 mm thick tiles + electronics in a cassette

- New scintillator tiles and SiPMs (CPTA MRS-APDs): improved performance in terms of noise and crosstalk
 - tiles and electronics boards can simply be cut to accommodate changing layer dimensions

Analog HCAL R&D ILD Workshop 2010

The Second Generation: Mechanics

• Vertical and horizontal test stacks already constructed

- Active layers fit in all calorimeter layers: Mechanical tolerances and structural stability under control!
- Use 2nd generation demonstrator to study all integration issues with fully equipped active layer

The Second Generation: Road Map

- Construct full read-out layer, test in DESY test beam (2010)
 - needs 6 HBU, ~ 1000 cells
- Reestablish performance with power pulsing and auto-trigger
 - noise occupancy, MIP S / N, efficiency
 - environmental stability
 - uniformity over full area
- Construct mini-tower (~ 2011): Electromagnetic calorimeter,
 - ~ 12 layers instrumented with a single HBU
 - build on electromagnetic results with present physics prototype, validate 2nd generation detector in a complete calorimeter setting
- completion of analysis by 2012 challenging

The Second Generation: Mechanical Integration

- Validation of mechanical construction
 - Module interconnection (maybe only barrel)
 - Stability under various orientations
 - ECAL HCAL integration
 - mechanics, cabling and cooling
 - active layers of varying dimensions, minimum dead zones
- Design barrel-endcap transition area
- Heat dissipation for (at least one) full area: test with fully equipped layer
- ILD cabling and cooling scheme
- Costing

Alternative Photon Sensor Coupling

- Investigate fiberless coupling of SiPM to scintillator: Possible due to the availability of blue-sensitive sensors
 - faster response: improved time resolution
 - simplified production of scintillator cells, relaxed mechanical tolerances
 - A challenge: Uniformity of response: Solved with specific shaping of scintillators

- Compatible with 2nd generation electronics boards with no or minimal modifications
- Study performance with new electronics!

NIM A 605 277 (2009)

Beyond 2012: Further Steps

- Full 2nd generation module: At least one 1 m³ instrumented, needed for full containment of hadronic showers
- Re-establish hadronic performance on full scale, building on the successful test beam campaigns with the physics prototype
- Study neutron timing in data, simulation and reconstruction: New electronics provides time stamping
 - "4D" Shower image: See the time structure of neutrons
 - pileup rejection: Crucial for CLIC
- Alternative absorbers: Iron and Tungsten
- Validate shower simulations in magnetic field

Simulation & Reconstruction

The analog HCAL in ILD

AHCAL in ILD: Roadmap

- Transport test beam model details to ILD
 - realistic simulation of all material, cell response (digitization), ...
- Define set of shower models to cover range of uncertainty from residual data MC mismatch
- Simulate realistic calibration uncertainties
 - Already achieved in selected areas, further studies under way
- Re-establish PFA performance
 - Study the benefits of software compensation, as tested with the physics prototype, for PFA (already under way)
 - Investigate the influence of neutron timing
- Extensive physics simulation studies: Also beyond 500 GeV

Summary

- A clear strategy of the Analog HCAL exists for the way to the DBD
- Well advanced in many aspects due to the comprehensive test beam campaigns with the physics prototype
 - Technological proof of principle, demonstration of long-term stability, calibration strategy...
- Clear path forward:
 - 2nd gen. active layers: Demonstration of power pulsing, time stamping in 2010
 - Mechanical integration, investigation of cooling issues,...
 - Extended simulation studies: Improved realism in the ILD AHCAL detector model based on test beam experience, advanced reconstruction methods, ...
 - Alternative photo sensor coupling & absorber materials: study potential for further improvement of detector, suitability for high (up to CLIC) energies

