

R&D of FCAL

W. Lohmann, DESY

On behalf of FCAL

- Simulation studies
- Sensors
- FE ASICs
- System Tests
- short- and midterm plans

Collaboration High precision design

Labs involved: Argonne, Vinca Inst, Belgrade, Bukharest, CERN, Univ. of Colorado, Cracow UST, Cracow INP, IKP Dresden, JINR, Royal Holloway, NCPHEP, Santa Cruz, Stanford University, SLAC Tuhoku Univ., Tel Aviv, Univ., DESY (Z.)

Very forward detectors- challenges

- Ongoing simulations to optimize detector design for
 - precise luminosity measurement,
 - hermeticity (electron detection at low polar angles),
 - assisting beam tuning (fast feedback of BeamCal data to machine)
- Challenges: radiation hardness (BeamCal), high precision (LumiCal) and fast readout (both)

January 28, 2010

Simulation Studies, impact of SB2009

Background in LumiCal is enhanced

- Higher occupation,
- more (useless) data to read out

needs to be studied!

January 28, 2010

ollaboration

Simulation Studies, beam-pipe shape

Simulation using 10⁶ Bhabha events indicates no impact on the precision of the Lumi measurement

However: keep the konical volume empty

January 28, 2010

Collaboration

Simulation Studies, impact of SB2009

BeamCal load per BX by a factor of ~2 larger

 single high energetic electrons (photons) detection capability will become worse study: how much?

Simulation tools:

- Guinea Pig
- BeCaS (a stand alone Geant4 BeamCal simulation programm)
- Mokka

See talk by Bogdan Pawlik on the Software pre-meeting

single high energetic electron

Forward (BeamCal) Veto

- **Identify energetic spectator e+ and/or e- from** $\gamma\gamma$ events
- Complication from beamstrahlung

 Very challenging to have a radiation hard yet a very efficient BeamCal for e/γ ID
 Zhiqing Zhang, LAL

Expected Signature at an ILC Detector

LumiCal sensors

LumiCal: low irradiation load \rightarrow silicon-tungsten sampling calorimeter

- Design (optimized geometry for luminosity measurement)
- ✓ Hamamatsu sensor prototypes (6", p in n, DC-coupled)

Measurements in Cracow, Zeuthen, Tel Aviv (cross calibration)

January 28, 2010

LumiCal sensors

3.0n

4.0n

5.0n

January 28, 2010

2

0

0.0

1.0n

2.0n

Current [A]

BeamCal sensors

GaAs sensors, delivered by JINR

(produced in Tomsk, Sibirian Academy of Science) 500 μm thickness, 3 inch wafer, Au metallisation

Probe station measurements

FE ASICs

- Frontend readout prototype chip developed at UST Cracow, manufactured in a MPW run (0.35 μm AMS)
- Measured (preliminary results) in Cracow and Zeuthen:
 - Noise ≈ 300 e⁻ (+ 28 e⁻/pF), gain ≈ 35 mV/fC
- ADC prototype chip developed at UST Cracow, manufactured in a MPW run
- Measurements done in Cracow- matches the requirements
 - Resolution 10 bit,

S/N ≥ 58 dB up to 25 MHz → proof of principle (pipelined ADC)

• 8 channel ADC: submission beginning of February

January 28, 2010

FE ASICs

- Design at Stanford University (KPIX technology, 0.18 μm TSMC)
- readout between bunch trains ('science readout')
- prepared for fast feedback (diagnostics readout to machine)
- prototypes expected in 2010

Pair Monitor

- \rightarrow Monolithic construction allows the elimination of the bump-bonding process.
- First step: design of a readout prototype ASIC for 3x3 pixels:
- digital readout (preamp, discriminator, counter)
- manufactured chip (CMOS 0.2 µm, SOI technology)
- performance measurements:
 - gain: ~ 17 mV/fC
 - noise: ~ 260 e⁻ (+ 130 e⁻/pF) @ signals ~ 20000 e⁻

Next steps in FCAL research

shortterm:

Full assembly of a Prototype Sector

- Sensors and ASICs connection (Cracow and DESY)
- DAQ (+Tel Aviv)
- Plan for a Beamtest in Summer at DESY

midterm:

FP7 application (AIDA)

- Infrastructure to allow 'Physics studies" after 2012
- Cracow (2x), DESY, Tel Aviv (from EUDET)
 - + VINCA and IFIN-HH (associats)

System Test in a beam

Shortterm Future

Readout/Fanout of sensors

- fine pitch PCB, (100...200µm for current few channel FE chips)
- flexible PCB to be designed. matters of crosstalk & capacitive load
- wire bonding to pads

 (wire bonding needs ~ 3mm gap between absorber tiles)
- alternative connection techniques are investigated
- wire bonding to FE chip
- Silicon and GaAs sensor samples

System Test in a beam

Shortterm Future

Readout/Fanout of sensors

- fine pitch PCB, (100...200µm for current few channel FE chips)
- flexible PCB to be designed. matters of crosstalk & capacitive load
- wire bonding to pads

 (wire bonding needs ~ 3mm gap between absorber tiles)
- alternative connection techniques are investigated
- wire bonding to FE chip
- Silicon and GaAs sensor samples

Midterm Future

FP7 Partners:

ollaboration

AGH-UST Cracow(Marek Idzik)CERN Geneva(Lucie Linsen)DESY Zeuthen(W. Lohmann)IFJPAN Cracow(L. Zawiejski)TAU Tel Aviv(H. Abramowicz)

Infrastructure to tackle the scientific goal:

FCAL Specific infrastructure:

- Flexible, high precision tungsten structureFast FE Readout
- •Module construction and test devices (jigs, mechanics and electronics test facilities)
- Position control devices

Infrastructure common with others:

- •Power pulsing
- Data acquisition
- •Tracking in front of the calorimeter

backup