DAQ Status & Developments

Vincent Boudry LLR, École polytechnique

ILD WS 2010 Couvent des Cordeliers, Paris 27/01/2010

Overview

- Many recent activities
 - Letter of Intend
 - Test Beam WS in LAL in november
 - EUDET meeting in december
 - AIDA call for FP7
- Near future
 - ▶ Preparation of ILD DBD → Plans until 2012
 - What is needed for TB (stand alone & combined)
 - could also be seen for ILD as a " small scale repetition"
 - Mutualisation : HW, SW, protocols, experience
 - Test of technologies

DAQ for ILD in the LOI

- 10⁹ channels & 5 Hz * ms bunch trains
 ⇒ triggerless operation (globally) with local auto-storage & SW filters
- Data, Computing < LHC
- Rates estimations
 - Beam-Beam Bgd dominated
 - ee pairs
 - Baseline SiW ECAL
 + AHCAL
 - For nominal parameters
 - HCAL 8000 Hits/BX
 - ECAL: 150 Hits/BX
 - TPC: 400 Hits/BX TABLE 5.1-1
 Data Volume
 - VTX: 3 Hits/cm²
 - \bullet \times 10 for Low P option on some det
 - if kept redo for SB2009
 - Missing: "pure beam" background

Subdetector Channels [10⁶] Occupancy [%] Data volume [MB]VTX 50800 1.0TPC 2 < 0.112FTD 1 g 2 SIT 1 30 6 SET $\mathbf{5}$ 1 1 ETD 4 10 7 ECAL < 0.1100 3 HCAL (DHCAL: 20) 130 8 1 MUON 0.1< 0.1LCAL 0.270126 BEAMCAL 0.04100 TOTAL ≈ 920 ≈ 340

Data Volume in MB per bunch train for the major ILD detector components

max thoughput of 20 GB/s
with margins
(✓ : ~ follows Moore's law)

DAQ After the Lol

- Improved estimation of BDG
 - What security margin should be kept wrt bgd estimation ?
 - vs. additional cost for full det (FCAL, VTX, SIT), or small part of CALOs
 - beam-beam predicted bdg (Pair prod)
 - beam "unpredicted" beam bdg (check progress of BDSIM).
- Estimation of rates based on more detailed set-up
 - ASICs occupancy²
 - ► ASIC Pipeline length $\leftarrow \triangle$ Loss of \pounds or acceptance
 - Topology (Data concentration & redundancy)
 - Noise & Calibration data
- Power-Pulsing in 4T field
- Cost estimate
- Develop Commons:
 - → Combined TB programs

Vincent.Boudry@in2p3.fr

 Continue R&Ds on critical components to demonstrate proof of principle.
 Define a feasible baseline design (options may also be considered).
 Develop a realistic simulation model of the baseline design, including faults and limitations.

8. Simulate and analyse some reactions at 1 TeV, including realistic higher energy backgrounds demonstrating the detector performance.
9. Develop an improved cost estimate.

- ► ASIC communication ? Daisy chain vs I2C vs ...
- ▶ FE communication $\leftarrow \rightarrow$ DAQ
- DAQ code, data formats, synchronsation procedures, ...

AIDA for TB and DAQ

• Successor of EUDET (\rightarrow end 2010) and DEVDET († 2009)

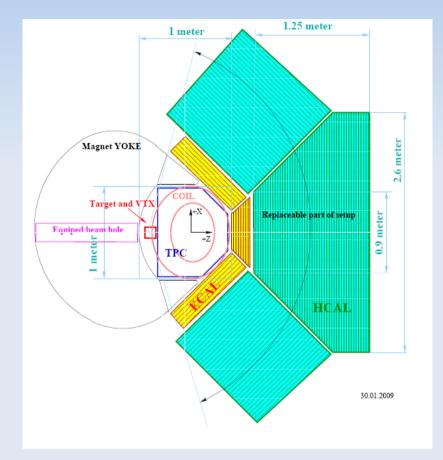
- AIDA targets user communities preparing experiments at a number of key potential future accelerators
- ► submitted in December; selection: April/May → funding in december
- ▶ 9 Work packages ⊃ joint research activities (RTD)
 - WP3, task 2 & 3: 3D Interconnection & Shareable IP Blocks for HEP
 - WP8 (Improvement and equipment of irradiation and beam lines): Coord. T. Behnke
 - Task 6.1: "common DAQ infrastructure": coord. V. Boudry & D. Haas (UniGe)

 \rightarrow toward combined TB (Pixel + Tracking + SiTr + Calos)

Synchronisation of systems (HW [Clk & signals], SW)

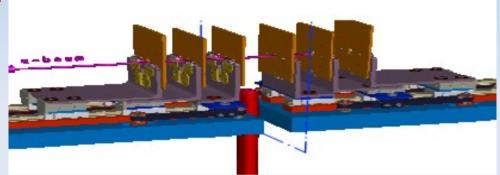
- Experience from EUDET Telescope + MANY
- Implicated: CNRS-LLR-LAPP, RHUL (CALO), UniGe, Bristol(Pixel), Lund, ULB (TPC) IFJPAN, TAU (FCAL), CNRS-LPNHE (SiTr)
- Critical for many groups: CH, UK
 - esp. EUDET telescope / EUDAQ

LCTW09: LC TB WS in LAL (3-5 nov 09)


http://ilcagenda.linearcollider.org/conferenceDisplay.py?confld=3735

- Plans summarized for all LC R&D
- Talks on DAQ integration: VTX, TPC, Calo + summary D. Decotigny, M. Killenberg, D. Haas, M. Wing
 - ► 1st attempt in AIDA call
 - 1^{st} task = evaluate the situation and needs.
 - 1st meeting yesterday in ILD WS pre-meeting
- → Convergence on HW & SW, data formats for combined TB
 - Synchronisation Units (TLU), Beam InterFace card
 - ► EUDAQ, Calice (XDAQ + DOOCS + Tango), Slow Control (⊃ DB for management of ½ MCh]
 - ► All data storage in LCIO (\supset RAW) ?
 - Philosophy = "BE LAZY" scenario aka follow "minimal action" path
- Interface to the TB facility → standard API for recording of beam conditions

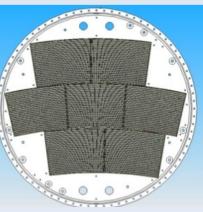
EUDET meeting


http://ilcagenda.linearcollider.org/conferenceOtherViews.py?view=standard&confld=4127

- Goal for combined TB
 - PFA testing:
 - far from obvious without very extended setup
 - Requires improved GEANT4 Hadronic models & thin target data
 - Test of key techniques
 - VTX scales
 - Reconstructions techniques
 - Separation in pseudo-jets
 - Improvement of Simulation
 - Mutualisation & cooperation
 - Better demonstration of performances

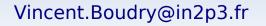
Status of Pixel / EUDET telescope

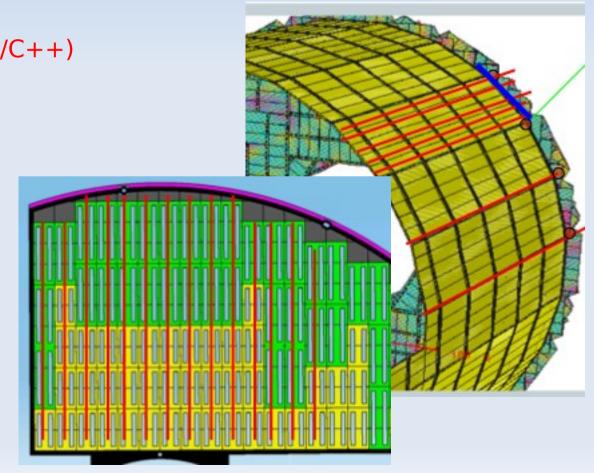
- Pixel Sensors tests done practically in the EUDET telescope
 - **EUDAQ** complete ACQ framework
 - ► **TLU**: generic Synchronization Unit
- Man power critical
 - 1 person on DAQ (UniGe) now future depending on AIDA
 - \rightarrow future of EUDAQ ?



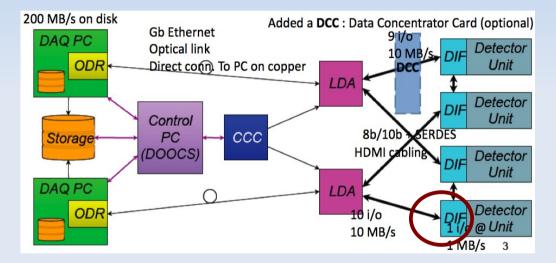
- Long and successful experience in combining devices
- Sensor: Mimosa26
 - 10.6 × 21.2 mm², 576 × 1152 pixels, ∫dt = 115 μs 100 MB/s chip → ~ 10 kHz in TB in spill ?
 - Next version: Ultimate Chip
 - 200 MB/s / chip × 20 sensors → test for concentration scheme and high BW.
 - Work started on fast acquisition in Plume collaboration

TPC Readout


- Now 2 advanced DAQ for TB, 3 readout electronics
 - (ALICE) ALTRO for double GEMs
 - $(8 \times 16ch \rightarrow FE \text{ Card}) \times 80 \rightarrow 3 \text{ RCU} \leftarrow opt \rightarrow DAQ \text{ PC}$
 - Ad-hoc DAQ (C code on Alice) + Slow Control
 - RAW data online writing → LCIO writing
 - ► (T2K) AFTER for µMegas
 - ♦ $(4 \times 72ch \rightarrow FE Card) \times 6 \rightarrow FE Mezzanine \leftarrow opt \rightarrow DCC \leftarrow Eth \rightarrow DAQ PC$
 - T2K DAQ writing to LCIO on the GRID
 - Manpower: 3 persons (part time) (Brussels, Lund, Saclay)
- Important effort on the miniaturisation (even for TB!) ongoing
- Plan to test µTCA, test EUDAQ
- For ILD
 - ▶ 10 cm for RO electronics
- Vincent.Boudry@in2p3.fr

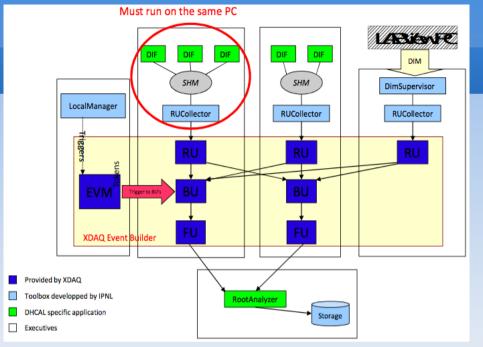


Si Tracking

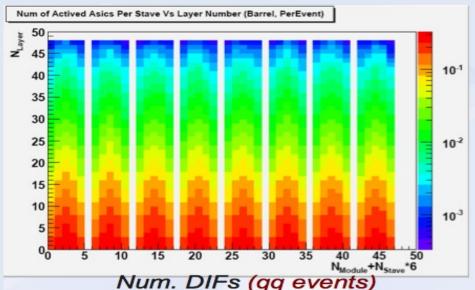

- 4 ≠ types of sensors → RO chip
 - ► Val chip \rightarrow SiTr130_128
- 2560 ch (today) \rightarrow 15kch (mid 2010) \rightarrow much more in 2011-12
- DAQ
 - NARVAL Framework (ADA/C/C++)
 - support in LAL
 - Slow Control by ENX
 - Custom HW toolkit box
 - Sync and more...
 - Manpower: 1 person (LPNHE)
- Reflexion on ILD ∫ started
 - Chaining of chips
 - ► △ Power pulsing in 4T

Calorimeter

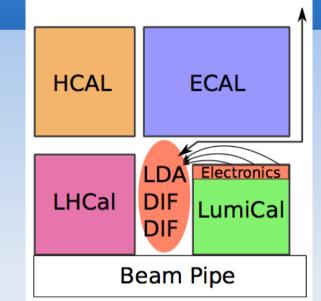
- Calice DAQ
 - Vers1 used in TB (ECAL, AHCAL, Muons)
 - DAQ2 being developed for more modular & embedded ASICs readout
 - "ROC" ASIC family & DIRAC chip
 - As prototype for ILD DAQ
 - all on 1 cable
 - To be fully ready end 2010
 - Reduced vers in June
 - DHCAL then ECAL, AHCAL
 - Working modes:
 - Triggered or ILC-like
 - test of Power Pulsing
 - General SW undecided yet but
 - Pieces of DOOCS, Event building & data format, performances test & simulation
 - Large working environment in XDAQ (⊃ with support from expert)



Specific Detector Interface


Calorimeter (2)

- XDAQ running for different DHCAL Card format & protocols
 → solution for global integration
- First preliminary results on Power Pulsed readout
 - to be tested in 3T soon


Simulation of occupancy per ASIC/SLAB

Worst expected DIF occupancy: 3% per train (GigaZ)

FCALs

- Not foreseen in combined TB
- ≠ detectors, sensors, expected rates (occupancy 1% in LCAL, 100% in BeamCal)
 - ► FE & ADC ASIC readout by FPGA
 - radiation hardness
 - ► Recent dev^t → benefit from other systems
 - Could be identical to calorimeters
 - DIF + LDA + opt link
 - Higher performances
 - Dedicated fast path for machine tuning
- Studies for ILD
 - Bandwith

- what about radiation resistance of DIF and LDA? Can they tolerate radiation loads in this location?
- data volumes and rates are known
 - In LumiCal: 4 MB/train and 160 Mbit/s or 16 Gbit/s
 - In BeamCal: 130 MB/train and 5 Gbit/s
 - BeamCal fast feedback: 80 B/bx and 1.6 Gbit/s
 - In Pair Monitor: 3.2 MB/train and 128 Mbit/s
- topology & lowest Power dissipation
- Placement

Path on TB combined DAQ

- Work on comparison of various system in view of combined TB has started
 - Sharing of experience will lead to avoid duplicated work and re-use of material / code
 - Manpower is scarse
 - Follow the least effort path
 - keep slow controls SW pieces
 - Exchange of basic SW signals + merging of data fluxes (most based on LCIO)
 - Trigger, Clock & Busy distribution/collect HW exist, must be interfaced
- Possible in 2012 ?

Some ILD DAQ open questions

- Technological choices & constraints
 - Time precision needed (clock distribution) per detector
 - Data Concentration topology & technology
 - Redundancy of data/config paths ?
 - Ethernet / fibre / custom ?
 - Power distribution & local power storage
 - Power pulsing constraints in a 4T Field
 - Specifications for cables & power route on PCBs
 - ► Grounding & EMC (ILD & TB)
 - Fault tolerance
 - Local storage of HW configurations → PROM
 - Checking of loaded config auto recovery in case of default ?
 - Busy handling (e.g. memory full)
 - Use of FPGA or ASICs in FE ?
 - Rad Hardness / Power dissipation / price

More open questions

- Central DAQ
 - Reconstruction etc: not yet critical but not to be forgotten
 - Price of Farm & storage
 - ► Load balance: Switches → UDP as a data packet format ?
- Central DB
 - Geometry mapping vs. HW configuration Database(s)
 - Automatic handling of noisy channels almost necessary
 - Noise is our absolute ennemy
 - ◆ Central / Local / Semi-local ? If local → more complex FE
- RAW data format storage :
 - Per bunch train
 - TPC integration time / recalibration
 - Possibility of analysis for long living particle decay