

Status & plans for semi-digital HCAL

Manqi Ruan

Outline

- Introduction:
 - Motivation
 - Semi-digital HCAL collaboration
- Milestones & Plans
- Current Status:
 - Hardware & Electronics: new technology adopted
 - Analysis & Software developments
- Conclusion

Motivation

3

- Semi-digital HCAL: promising technology for the ILD!
 - High efficiency, homogeneous, low cost and low consumption, Negligible dead zones, robust & Higher Granularity!

Semi-DHCAL Collaboration

- Build cubic meter SDHCAL prototype as proposed in Lol
 - Self supporting mechanic structure
 - Power pulsed embedded readout electronics
 - ~400,000 channels (40 layers of 100x100cm²)
 - Current Prototype: MiniDHCAL + 1m²
- International cooperation:
 - France: IPNL, LAL, LLR, LPC;
 - Russia: IHEP-Protvino
 - Spain: CIEMAT
 - Belgium: Louvain-La-Neuve, Ghent
 - China: Tsinghua
 - Tunisia: Tunis
 - Collaboration with: CERN-Bologna (MCRPC) and LAPP (DIF)
 - Communication with US DHCAL group

Milestones & plan

- Milestones:
 - Project started in 2006
 - Construction of mini DHCAL (2008) & square meter (2009)
- Future plans: toward the proof of principle!
 - Test of power pulsing on detector in 3T magnet at CERN H2 beam before summer 2010; now being tested in lab.
 - Construction of cubic prototype of SDHCAL according to ILD design (electronics, mechanics, DAQ) before end of 2010;
 - Calibration at large scale (with charge injection & cosmic rays) in first semester of 2011;
 - Data taking, analysis and technology evaluation in 2011 and 2012;
 - **PFA** development using DHCAL in 2010;
 - **PFA tests with high intensity beam and/or with target in 2011;**

1 m² prototype

- 144 ASICs, each connected to 8*8 1cm² cells, totally 9216 channels;
- Highly homogenous & low consumption gas system!

Test beam shower profile reconstruction ILDWS@Paris

GRPC & Spacer

- Thickness of few millimeters \rightarrow to reduce the coil cost
- Efficient, Homogenous, cheap and easy to build

To reduce dead zone: Replacing fishing lines with ceramics mini balls Glass layer under self-weight (~17Pa)+ 8kV electronic field (~140Pa): Deformation<40µ

Monitoring of coating resistance stability & aging

1 m³: Self-supporting Mechanics

Self-supporting Iron structure: 16mm Iron layer + (6 mm PCB + 4mm Iron layer);

Electronics

The first use of HARDROC1(2): 64 channels with **2(3) thresholds** Range: 10 fC-10pC

Test of Power-pulsed \rightarrow consumption < 10µW/ch (0.5% duty cycle), X-talk < 2%: Stabilized in ~10 µs! Confirmed by analogue & digital readout

25/01/2010

(CMS→ILC transfer)

DAQ Schematic View

Analysis: efficiency homogeneity

Check the efficiency homogeneity with cosmic ray experiment: MiniDHCAL used as tracking system

Enhance the rate capabilities

Thick Chinese Statguard dac1=200- Rate >30kHz/cm^2

Float glass : $10^{13} \Omega.cm \rightarrow GRPC$ rate detection < 100 Hz/cm^2 Tsinghua University: Semi-conductive glass $10^{10} \Omega.cm \rightarrow$ GRPC rate detection > 10 KHz/cm^2 (high efficiency) It's possible to record multiple events in test beam, providing real samples with $1*1 \text{ cm}^2$ granularity for PFA reconstruction

Software: Digitization

- Study the dependency of energy deposition in each cell and induced charge on each pad with cosmic ray data -> basis for the threshold optimization study
- Marlin digitization module developed, can be used for other type of gaseous detector with experimental input

Software: Druid

Druid: to achieve better understanding to ILD events & Shower details;

Simultaneously display reconstructed & MCTruth objects: tools to analysis the performance of reconstruction software;

With Mokka option to keep tracks generated in calorimeter region: tools to develop calorimeter based algorithms;

Central MC production

- Data samples with different detector geometries:
 - Single particle events (partially finished);
 - Benchmark ILC events, especially events with double/Multiple jets, largely boosted jets & jets overlay
- Serve as the base for later analysis
 - Global detector property analysis: leakage, calibration, hit rate...
 - Geometry & detector parameters optimization study: i.e, DHCAL thresholds optimization
 - **PFA algorithm optimization for DHCAL**
- Will be upgrade with new geometry data base and new type of events

PFA algorithm optimization

- Current Pandora PFA is optimized for Si-W ECAL and Analogy HCAL --> optimization is needed for DHCAL with higher granularity & different geometry (a la Videau)
- Software tools (Digitization, Display, etc.) and samples (Central MC Production) are under preparation

•

٠

Conclusion

- Semi-digital HCAL is a solid option for future ILD.
- The Semi-digital HCAL collaboration is aiming at producing and testing a cubic meter technological prototype (before 2012) according to the Lol design:
 - A platform for many new technologies
 - Self-supporting Mechanical structure,
 - power-pulsed embedded readout
 - Semi-digital readout
 - Capability to produce & operate, monitoring the cubic meter
 - Manufacturing of large sample of large RPCs, test ASICs, coating, etc.
 - Tools for monitoring the aging, stability & calibration on a large number of channels.
 - Progress are made at steady pace as expected
- Software developments & central MC production is undergoing:
 - Aiming at optimize the PandoraPFA with DHCAL geometries & electronic readouts
 - Test reconstruction of energy from semi-digital information
 - Test DHCAL vs AHCAL options on number of benchmark channels & geometry optimization