



# Detector integration organisation

#### Matthieu Joré – January the 28<sup>th</sup>

jore@lal.in2p3.fr









- Introduction :
  - RD's recommendations
  - Interactions with the other ILD working groups
  - Motivations for a detector integration effort
- Detector integration studies
  - Present status and main priorities
  - Integration strategy
  - CAD management
  - Notion of Placeholders
  - Use of the ILC EDMS
- Conclusions





- Continue R&Ds on critical components to demonstrate proof of principle
- Define a feasible baseline design (options may also be considered) \_\_\_\_\_\_ Charge of the detector integration team
- Complete basic mechanical integration of the baseline design accounting for insensitive zones
- Develop a realistic simulation model of the baseline design, including faults and limitations
- Develop a push-pull mechanism working with relevant groups
  - See Tauchi san's talk
- Develop a realistic concept of integration with the accelerator including the IR design
- Simulate and analyse benchmark reactions, which can be updated
- Simulate and analyse some reactions at 1 TeV, including realistic higher energy backgrounds demonstrating the detector performance
- Develop an improved cost estimate.



# Interaction with the ILD groups





#### **ILDWS 2010**





- CMS experience has taught us that we need to start integration as early as possible (start of integration before 1994)
- Realistic simulation model must be ready of end of 2010 (result of soft pre meeting)
- Integration studies to be performed before :
  - Identification of insensitive zones such as the beam holes and gaps
  - Design of support structure for each sub systems
  - Integration of cables and services





Detector integration baseline has reached a good status in the Lol

### BUT

- Some remaining studies need to be performed for end 2010 :
  - TPC support
  - Inner detectors integration (VTX+silicon disks) including beam pipe
    - First concept exists but a more detailed design is mandatory (who?)
  - First integration of cables and services
  - Optimisation of the forward region including beam line components
- Other points to be studied/optimised for DBD 2012:
  - QD0 support
  - MONALISA integration (QD0 position monitoring)
  - HCal/ECal interface

- ...





- Integration rules will be defined :
  - For 3D model exchange (coordinates system, name, etc....)
  - For integration : adiabatic detectors (no heat exchange with its neighbours), ...
  - No go boxes & placeholders for each sub system
  - Etc...
- Information from sub detectors groups are mandatory :
  - Technical contact to be identified
  - Services (cooling needed, cables, monitoring system)
  - Supporting method
  - Weight
  - Accuracy needed, alignment method
  - Etc....
- C. Clerc is preparing a template document which would be filled by each sub detector groups ("Sub detectors interface parameters document")
- These will be stored in the ILC EDMS





- Slight changes from the previous CAD organisation :
  - add a technical contact for each sub system
  - Add the use of the EDMS for engineering data storage and placeholders models







- Integration of sub systems with defining a placeholder (= integration box)
  - Quicker to integrate in full model than detailed model (first level of integration)
  - Easy to check detailed model dimensions / allocated box
- Example of LumiCal :

Overall dimensions +Gaps for fixing system +Tolerances ; deformations +Services : cables/cooling +Room for mechanical alignment and for monitoring



From C. Clerc presentation during MDI/Integration pre meeting











- A GDE recommendation
- ILC EDMS system provides :
  - Data storage system allowing technical data sharing in an international context
  - ILC is a long-term experiment: Product lifecycle management
  - Powerful drawings and 3D viewer
- For ILD, this would be the place to share :
  - Technical notes
  - Sub detectors interface parameters document
  - Drawings and placeholders model
  - FEM calculation results
  - ...
- Ease the work of integration



From C. Clerc presentation during MDI/Integration pre meeting





- Detector integration studies are mandatory for having :
  - A basic and feasible mechanical integration of the baseline design
  - A realistic simulation model
- Tools are available for performing this work :
  - CAD management system
  - ILC EDMS
- The detector integration group need :
  - Information from sub detectors' group
    - Sub detectors interface parameters document
  - A technical contact named from each sub detector
  - To define integration rules and placeholders as early as possible

Thanks for your attention.