Plans for the HCAL Optimisation

Angela Lucaci-Timoce

Scintillator HCAL

Digital HCAL

Overview

Optimisation of the Scintillator HCAL

- Already optimised, based on PFA performance (although it may not be the final answer):
 - HCAL depth: \sim 5 λ_I
 - cell size: 3 cm
 - absorber material: Fe
 - scintillator thickness: 5 mm
 - absorber thickness: 20 mm
 - layer support structure: 5 mm Al

Optimisation of the Scintillator HCAL (continued)

Still to be done:

- Simulate a full bunch train, including background
 - study occupancy in the detector (do we need trigger?)
 - determine buffer length of the electronics (not worried about the radiation damage) ⇒ could change the whole electronic concept
- Omparison of different detector techniques with the same design
 - in the moment, we have 2 structures: a la Videau, with gas detectors, and a la Tesla design, with scintillator, with different levels of realism
 - direct comparison difficult

Absorber material: iron vs tungsten

- maybe PFA algorithm needs retuning for the latter case
- Engineering design of endcaps
 - no dedicated design yet
 - optimisation

Gap at the interaction point

• benefit from shifting it from 0?

Optimisation of the Digital HCAL

Adapt Pandora to the DHCAL

- Main goal: adapt Pandora to the DHCAL with the circular mechanical structure (á la Henry Videau)
- Tools (event display, digitisation, calibration) and Monte Carlo samples are under preparation
- Event viewer: DRUID (based on ROOT) to look at shower details and analyse performance of reconstruction software (see Manqi's talk in the software pre-meeting)

Central MC Production

- Single particle events (partially finished)
- Benchmark ILC events (especially event with double/multiple jets, largely boosted jets and jets overlay)
- Serve as base for later analyses:
 - global detector properties (leakage, calibration, hit rate, etc)
 - optimisation of DHCAL thresholds

Optimisation of the Digital HCAL (continued)

New Mokka Plugins

- for saving particles inside calorimeter region (study showers in detail)
- for suspending tracks that enter the DHCAL \Rightarrow allows comparison of different HCAL options

Digitisation Study

- Mokka output contains simulated hits with deposited energy in the gas (i.e. "analog" output) ⇒ the "digital" part comes with Marlin processors
 - Study the dependence of energy deposition in each cell on the induced charge on each pad with cosmic ray data
 ⇒ basis for threshold optimisation study
 - Marlin digitisation processor developed, can be used for other type of gaseous detectors, with experim. input

