Update and future plan of $H \rightarrow cc$

'10 1/29 Y. Takubo (Tohoku U.)

Introduction

Higgs branching ratio

• The measurement is essential to confirm Higgs mechanism.

- Estimation of measurement accuracy of $H \rightarrow cc$ with $e^+e^- \rightarrow ZH$ is required for LOI.
 - > Optionally, $H \rightarrow \mu \mu$

Analysis mode

- ZH→qqcc : Wenbiao → Hiroaki
- $ZH \rightarrow vvcc$: Yoshida
- ZH \rightarrow llqq : Roberval \rightarrow Yoshida

The status of the analysis and future plan are shown.

Simulation setup

Simulation condition

- Higgs mass: 120 GeV
- E_{CM} : 250 GeV (with Beamstrahlung, ISR, and FSR)
- Integrated luminosity: 250 fb⁻¹
- Beam energy spread: 0.28% (e⁻) and 0.18% (e⁺)
- Beam polarization: 80% left-handed for e^- and 30% right-handed for e^+

Signal v.s. BG

- Signal: $ZH \rightarrow qqcc$, vvcc, llcc
 - ≻ σ(ZH): 387fb
 - > BR(H→cc): 3.6%
- BG: qqqq, qq, qqll,

Analysis procedure

• Selection of ZH events from SM-BG.

- > There are large SM-BG from ZZ, WW, and etc..
- > The kinematical selection cut is necessary.
- Identification of $H \rightarrow cc$ and $H \rightarrow bb$ in ZH events.
 - > $H \rightarrow bb$ is large BG for $H \rightarrow cc$.
 - > LCFIVertex is used for the flavor tagging.
- Estimation of $BR(H \rightarrow cc)$
 - > ILD: Template fitting with 3D histogram of b/c/bc-likeness.

 \checkmark The same method as SiD was used for ZH \rightarrow qqcc in LOI.

> SiD: Statistical evaluation assuming knowledge of ZH xsec and Higgs branching ratio other than $H \rightarrow cc$.

Result in LOI and ALCPG09

LOI

ILD SiD

- ZH→vvcc : 13.8% 10.3%
- ZH→qqcc : 30.0% 5.8%
- ZH→llcc : 28.0%
- $ZH \rightarrow qq\mu\mu$: 1.1 σ

ALCPG09

• ZH
$$\rightarrow$$
llcc : 20.8%

• $ZH \rightarrow qq\mu\mu$: 1.1 σ

<u>Remarks</u>

• The measurement accuracy of $ZH \rightarrow vvcc$ becomes consist with ILD and SiD.

• There are still large difference for $ZH \rightarrow qqcc$.

→ The consistency check with SiD and current status of the analysis for ZH→qqcc are shown.

Result of $ZH \rightarrow qqcc$ in LOI

In LOI, we have large difference of the selection efficiency with SiD.

of events after selection cut

For the comparison, Wenbiao tries to apply the same pre-selection cut as SiD after LOI submission.

Pre-selection with SiD cut

	ZH→qqcc	ZH-BG	SM-BG
Nocut	1915	50590	3.94x 10 ⁷
Evis > 170GeV	1915	48057	1.62 x 10 ⁷
thrust < 0.95	1912	47979	1.24 x 10 ⁷
$ \cos\theta_{\text{thrust}} < 0.96$	1819	45695	8361181
$75 < \theta_{\rm Hjj} < 165$ deg.	1702	42686	7331015
$50 < \theta_{Zjj} < 150 \text{ deg.}$	1528	38309	6060228
$95 < M_{\rm H} < 145 {\rm ~GeV}$	1408	33967	3289201
45< M _Z <105 GeV	1404	33879	3276026
$-\log_{10}(Y_{34}) < 2.7$	1380	33345	2592239
Ntrk>1, Npfo>5	1351	30868	2113206
$E_{\gamma} < 10 GeV$	697	17403	906180
SiD:	947	15687	967312

• After LOI, Wenbiao used the same cut as SiD.

• However, some cut values were different.

SiD cut: $\leftarrow 105 < \theta_{Hjj} < 165 \text{ deg}$ $\leftarrow 70 < \theta_{Zjj} < 160 \text{ deg}$ $\leftarrow 110 < M_H < 140 \text{ GeV}$ $\leftarrow 80 < M_Z < 110 \text{ GeV}$

, Still inconsistent.

At first, we checked consistency within ILD.

Consistency check within ILD

	ZH→qqcc		ZH-BG		SM-BG	
	Hiroaki	Wenbiao	Hiroaki	Wenbiao	Hiroaki	Wenbiao
Nocut	2914	1915	76927	50590	4.38 x 10 ⁹	3.94x 10 ⁷
Decay mode selection	1693	1915	38273	48057	2.41 x 10 ⁹	$1.62 \ge 10^7$
# of charged track > 4	1238	1864	27925	43256	3323060	7060154
$-\log_{10}(Y_{34}) < 2.7$	1218	1826	27563	42572	2635920	4792438
thrust < 0.95	1217	1825	27551	42545	2584510	4674499
$ \cos\theta_{thrust} < 0.95$	1157	The nu	mber of e	events af	ter SiD cut	became
$105 < \theta_{\rm Hjj} < 165$ deg.	1080	consiste	ent within	n ILD.		
$70 < \theta_{Zjj} < 160 \text{ deg.}$	1028	\rightarrow Let's	s compar	e with S	iD.	
$110 < M_{\rm H} < 140 {\rm ~GeV}$	982	1142	22076	24712	1209100	1118000
80< M _Z <110 GeV	982	1142	22074	24711	1206570	1117958
$E_{\gamma} < 10 GeV$	515	582	12601	13758	570479	485898

Comparison with SiD

	ZH→qqcc		ZH-BG		SM-BG	
	ILD	SiD	ILD	SiD	ILD	SiD
Nocut	2914	2869	76927	76910	4.38 x 10 ⁹	9.28 x 10 ⁹
Decay mode selection	1693	1837	38273	41016	2.41 x 10 ⁹	3.94 x 10 ⁷
# of charged track > 4	1238	1143	27925	30125	3323060	18601753
$-\log_{10}(Y_{34}) < 2.7$	1218	1101	27563	29478	2635920	13921271
thrust < 0.95	1217	1047	27551	27065	2584510	8737017
$ \cos\theta_{thrust} < 0.95$	1157	1017	26258	26322	2295690	7943851
$105 < \theta_{\rm Hjj} < 165$ deg.	1080	The pe	rformanc	ce of E_{γ} of	cut 8300	5871237
$70 < \theta_{Zjj} < 160 \text{ deg.}$	1028	is muc	h differei	nt.	6150	4898312
$110 < M_{\rm H} < 140 {\rm GeV}$	982	966	22076	22533	1209100	1917231
80< M _Z <110 GeV	982	963	22074	21877	1206570	1561432
$E_{\gamma} < 10 GeV$	515	947	12601	15687	570479	967312

Optimization of E_{γ} cut

- E_{γ} distribution for ILD is wider than SiD.
- E_{γ} <20GeV is required for ILD. (SiD: E_{γ} <10GeV)

ZH→qqcc	ZH-BG	SM-BG
• ILD: 895	• ILD: 20351	• ILD: 1036990
• SiD: 947	• SiD: 15687	• SiD: 967312

The cut results became almost consistent with SiD.

 \rightarrow We study to derive Higgs BR.

Optimization of template fit

Future plan for $H \rightarrow cc$ study

- The sensitivity to Higgs BR must be evaluated as a function of E_{CM} .
 - > It is not trivial because the performance of flavor tagging depends on the jet-clustering.
 - > The selection efficiency also depends on the jet-clustering.
- The effect of the radius of the VTX inner most layer should be checked.
 - > Depending the accelerator design, the VTX inner most layer might be put at larger distance from IP.

Summary

• After LOI, we try to check consistency of Higgs BR analysis with SiD.

- We had consistent number of events after selection cut with SiD and ILD before ALCPG.
- There is a large discrepancy of the measurement accuracy of Higgs-BR with SiD.
- •The measurement accuracy of the Higgs-BR depends on the binning of the template.
 - > The problem will be solved soon.
- The sensitivity to Higgs BR must be evaluated as a function of E_{CM} and the radius of VTX layer.