

Orsay Micro Electronic Group Associated

Engineering run: feb 2010

- Omega
- Reticle: 22 x 18 mm2, 50 reticles per wafer
- 25 wafers needed (cost: 150k masks + 100k wafers)
- 1250 chips of each type

HaRDROC status

- 400 chips HARDROC2 produced in june 2008 to equip 24-chip RPC and Micromegas PCBs for square meter
 - 3 thresholds (0.1-1-10 pC)
 - Power pulsed to 5-8 μW/ch
 - Package TQFP160
 - Some difficulties loading Slow ControlSOLVED in HARDROC2B
 - Readout and DAQ2 validation
- 200 HARDROC2B received in dec 09
 - Ready to equip one RPC prototype
 - Final for production : PRR this afternoon
 - See talk by N. Seguin-Moreau

Slow control test

Remaining issues

- Full detector test with power pulsing
 - Tests on going at Lyon : See talk by C. Combaret
- HR2B not optimized for micromegas
 - Late information on signal amplitude and speed (150 ns)
 - => Thresholds around 2 fC
 - => slower "fast" shaper needed
 - Needs charge preamp
 - => High voltage protection studies mandatory, combined with preamp

SPIROC status

- Omega
- 50 chips SPIROC2 produced in june 2008 to equip AHCAL and ECAL EUDET modules
 - Fulfiled EUDET milestone
 - Package TQFP208 (w=1.4 mm)
 - Difficult slow control loading (cf HR
 - Measurements coming in
 - Complex chip
 - Collab LAL, DESY, Heidelberg
 - See talk by M. Reinecke

External users :

 astrophysics PEBS (Aachen), medical im Pisa, Valencia...), nuclear physics (IPNO) (Napoli)

Single-Photon Peaks I

Spiroc pending issues

Omega

- Autotrigger mode
- Linearity
 - Tests by Riccardo
- Power pulsing
- Time measurement

- SPIROC2A
- SPIROC2B

SPIROC2A

- Conservative version of SPIROC2, pin to pin compatible
 - Fix slow control bug (as in HARDROC2B)
 - Fix probe bus (select line)
 - Add the POC module for shutting down the clocks
 - Fix the first empty frame

SPIROC2B

- More ambitious modifications, still pin to pin compatible
 - Fix bugs as in SP2A
 - Put new input DAC with better linearity
 - Add external trigger input (LVDS)
 - Better discriminator (100 μV offset vs 1 mV)
 - If possible, add gain adjustment channel by channel

SKIROC status

- SKIROC1 useless with detector (no readout)
- SPIROC2 used as SKIROC emulator
 - 95% identical to SKIROC (only preamp differs)
 - 36 channels instead of 64
 - Limited dynamic range (~500 MIPs)
 - Tests starting with FEV7 to address embedding issues
 - Noise tests on testboard proceeding (ENC ~ 1 ke-)
- R&D will continue within CALICE
 - SKIROC2 to be submitted with production run
 - 64 channels
 - Very large dynamic range: HG for 0.5 to 500 MIP, LG for 500 to 3000 Mip
 - Simulations are on going
 - Expensive ASIC (70 mm2 = 70 k€) => MPW not worth it

ECAL board: FEV7 with SPIROC2

- Omega
- Version 1: June 2009, with packaged chips (TQFP 208) for the U structure (3mm available for the electronics)
- Version 2: September 2009, with COB: see talk by S. Callier
- SPIROC2 used in SKIROC mode

SPIROC in SKIROC mode

Omega

- Measurements on test board
 - Preamp noise
 - S curves
 - Noise: 0.5 fC
 - MIP = 4fC
- See talk by M. Cohen-Solal

Conclusion

- Omega
- Production run coming up very soon : feb 2010
 - Chips (bare dies) expected may 2010
 - Selective dicing + packaging to proceed

Test beam with technological prototype

- Data rate (Spiroc/Skiroc): naive estimate
 - Volume: 36ch*16sca*50bits=30 kbit/chip
 - Conversion time : $16*100 \mu s = 1.6 ms$
 - Readout speed 5 MHz (could be increased to 10-20 MHz)
 - 8 chips/DIF line (one FEV only)
 - Total: 1.5ms + 30000*200ns*8 = 50 ms/16 events = 3 ms/evt=> 300 Hz during spill

- Overall readout rate
 - « Add » 1-10% power pulsing : 3-30 Hz effective rate
 - Pessimistic as assuming all chips full
 - interesting tests to be done
- Note: readout electronics designed for ILC low-occupancy, low rate detector ≠Testbeam!!

Read out: token ring

Readout architecture common to all calorimeters

14 jan 2010

CdLT: electronics overview LLR EUDET meeting

mega