

Cavity Tuning Machines Project Update

Ruben Carcagno January 11, 2010

Cavity Tuning Machines Status

DESY and KEK machines at Fermilab Industrial Center Building (ICB)

- DESY delivered the FNAL and KEK machines mechanical assemblies to FNAL on August 2009
- A few mechanical parts need to be redesigned and fabricated, DESY expects delivery of final parts by end of January 2010

Analog Inputs	Digital Inputs	Motor Outputs	Digital Outputs	TOTALI/O	
21	35	9	19	84	

Control Rack Fabrication Status

First production control rack fabrication in progress

- Design complete and fully tested with prototype rack
- First production control rack completed by mid-January 2010
- All four production control racks completed by end of April 2010
- Each control rack include five FNALdeveloped electronics boxes

1/11/2010

FNAL Electronic Boxes

Emergency Trip System Box

Linear Actuator Drive Box

Data Acquisition Box

Manual Control Box

Software Development Status

Operator display example

 Plug-in examples: cavity model, eccentricity measurement, bead-pull measurement, spectrum measurement, gate service, train positioning, touch service, tuning, eccentricity model, monitoring GUI

- Based on a framework/plugin architecture
- Framework developed and tested, automation features included
- Most plug-ins developed and tested: all functions for tuning a cavity are available
- More testing and debugging needed for exception handling, reliability. Automatic eccentricity correction mechanical model under development
- First complete release by April 2010
- Additional automation and speed expected to evolve as more operational experience is gained

9-cell Cavity Tuning

Tuning Model

Model input: target frequency, modal frequencies, frequency shifts during bead pull at each mode

ative	FieldStrengt	h									Frequency [Hz]
0	36.3456	111.088	172.08	212.925	234.701	212.347	170.228	108.883	34.1396	0	1.2731E+9
)	79.6375	196.756	219.468	143.089	5.87282	141.596	221.558	199.382	79.7746		1.27531E+9
	114.147	225.136	114.178	105.324	223.712	106.621	113.332	221.393	112.708		1.27845E+9
	145.452	188.861	81.1844	217.098	5.60625	217.601	78.5301	187.65	145.881		1.28263E+9
	169.244	108.916	205.075	44.8338	217.599	43.3196	205.976	108.568	173.013		1.28683E+9
	192.028	4.4587	186.056	187.379	3.61248	190.344	183.572	5.60892	193.262		1.29107E+9
	207.238	107.435	41.8871	167.902	210.38	165.552	38.0865	109.595	205.522		1.29432E+9
	211.529	185.591	140.024	75.0957	14.1894	78.0684	142.192	188.039	211.336		1.29661E+9
	149.547	149.467	151.486	149.92	144.679	149.256	149.376	147.763	146.254		1.29735E+9

Model output: PI-mode target frequencies as each cell is tuned in turn

Bead pull measurements

Spectrum measurements

Tuning Algorithm

- Program automatically moves tuning jaws to achieve model dF while keeping laser spot centered
- PI-mode frequency feedback provided by network analyzer
- For eccentricity corrections, program will move tuning jaws while shifting laser spot to new (x,y) coordinate provided by mechanical model (under development)

Cavity Alignment Laser

1/11/2010

Cavity Tuning Machines Update

Eccentricity Measurements

Reference Flange Perpendicularity

 Reference flange perpendicularity is critical for welding He vessel to XFEL cavities

Eccentricity Measurements

Pre-tuning

Post-tuning (eccentricity correction not attempted)

1/11/2010

Cavity Tuning Machines Update

Cavity Tuning Machines Cost

- MOU cost estimate per machine: \$492 K
 - MOU specified labor rate of 70 kEuro per person-year, with an exchange rate of 1 Euro = 1.4462 US\$ on Nov. 05, 2007
- Actual cost reported below as of End of Calendar Year 2009 (EOCY09). Used 1,760 labor hours per FTE
- DESY cost to EOCY09 (from Wolf-Dietrich Moeller, 12/22/09)
 - Labor: 12,829 hours, 7.3 FTEs, \$739 K
 - M&S: \$813 K
- FNAL cost to EOCY09 (from TD Project 3000 accounting, 1/6/10)
 - Labor: 10,838 hours, 6.2 FTEs, \$623 K
 - M&S: \$209 K
- Total cost to EOCY09 (4 machines): \$2,384 K
- Total cost to EOCY09 per machine: \$596 K
 - Final cost per machine to be determined ~ April 2010
- KEK contributions (direct):
 - JFY07: \$71,885, JFY08: \$223,873, JFY09: \$197,239
 - Total KEK contributions to EOCY09: \$493 K

Main Changes for 650 MHz cavities

Tuning Jaws (x6)

Eccentricity Measurement System, Dummy Cavity

Protective Shields (x10)