A Large TPC Prototype for an ILC Detector

Peter Schade

on behalf of the LCTPC Collaboration

DESY Hamburg

16th February 2010

The LCTPC collaboration

Peter Schade, Large TPC Prototye

VCI Vienna, 16-02-2010 2/ 22

Future e^+e^- Linear Collider

International Linear Collider - ILC

- e^+e^- collider @ $\sqrt{s} = 500 \, {
 m GeV}$ (upgradeable to $1 \, {
 m TeV}$)
- \bullet luminosity: $\mathcal{L}=2\cdot 10^{34}\,{\rm s}^{-1}{\rm cm}^{-2}\,\rightarrow\,500\,{\rm fb}^{-1}$ in four years
- construction could start around 2015
- Compact Linear Collider CLiC with up to $\sqrt{s} = 3 \text{ T}$ \rightarrow technical feasibility to be demonstrated

Peter Schade, Large TPC Prototye

ILD Detector Concept

Optimized for Particle Flow

- $\bullet~3.5\,\mathrm{T}$ solenoid with highly granulated HCAL and ECAL inside
- large Time Projection Chamber
- silicon vertex detectors
- slightly inhomogeneous magnetic field (Anti DiD)

Why a TPC at a Linear Collider

- Particle Flow is believed to be the optimal reconstruction scheme for expected physics signatures at ILC energies
 → requires tracking with highest precision and efficiency
 → robust identification of every particle, even in jets
- a TPC is well suited for Particle Flow
 - \rightarrow robust tracking up to 200 space points per track (ILD)
 - \rightarrow TPC is robust towards backgrounds
 - $\rightarrow dE/dx$ -measurement input to particle identification
 - \rightarrow TPC has a low material budget

Peter Schade, Large TPC Prototye

Requirements to a LC TPC

- Particle Flow reconstruction defines stringent requirements to all subdetectors
- for the TPC:

 \Rightarrow performance about ten times better compared to previous TPCs

Road map of the TPC R&D for an LC

- LCTPC collaboration aims at the development of the TPC of a LC collider detector
- performance goals require substantial improvements of traditional readout techniques
 - \rightarrow new technique: readout with micro pattern gas detectors

R&D phases

- Demonstration phase Prospect studies:
 - \rightarrow operation of MPGD readout in small/medium prototypes
 - \rightarrow demonstration of feasibility
- Onsolidation phase Technical studies:
 - \rightarrow development of large scale readout structures (ILD module)
 - \rightarrow operation techniques to cope with inhomogeneous B-field
- S Construction phase Build the ILD TPC

MPGD based TPC readout: Prospect Studies

 $\bullet\,$ small prototypes: diameter $\leq 30\,{\rm cm}$ - drift length $\leq 80\,{\rm cm}$

 \Rightarrow TPC with MPGD readout can reach $\sigma_{\perp} \leq 100\,\mu{\rm m}$

Peter Schade, Large TPC Prototye

VCI Vienna, 16-02-2010 8/ 22

Infrastructure for Consolidation Phase - EUDET setup

- for the development of large scale MPGD readout structures \rightarrow Large TPC prototype required with diameter $O(1 \,\mathrm{m})$
 - \rightarrow magnet with inhomogeneous and measured field
 - \rightarrow test beam with external reference detectors
- TPC R&D setup installed at DESY *e*⁻ test beam
 - \rightarrow within the EUDET program
- superconducting magnet (PCMAG)
- silicon tracking detectors
- Large Prototype (LP) consisting of → field cage with cathode

• anode end plate for LP constructed within LCTPC collaboration

Large TPC Prototype: Testbeam Setup

EUDET setup for TPC R&D

- PCMAG with $B \leq 1.25\,\mathrm{T}$
- ullet bore diameter: $85\,\mathrm{cm}$
- LP support structure
- Test Beam e^- with $1 \,\text{GeV} \le E_{\text{beam}} \le 6 \,\text{GeV}$

Peter Schade, Large TPC Prototye

VCI Vienna, 16-02-2010 10/ 22

Testbeam Setup - Silicon Tracking detectors

- $\bullet~2$ layers of Pixel modules with 20 μm spacial resolution
- two unbiased points along the trajectory <u>inside</u> PCMAG
 → for the development of TPC reconstruction algorithms in inhomogeneous magnetic fields

Peter Schade, Large TPC Prototye

Large TPC Prototype: Field Cage

LP Field Cage Parameter

- L=61 cm $d_{inner} = 72$ cm
- up to $25 \,\mathrm{kV}$ at the cathode drift field $\rightarrow E \approx 350 \, V/cm$

Peter Schade, Large TPC Prototye

\rightarrow structure made from composite materials

 \rightarrow material budget: 1.24 % X₀

 $\Rightarrow 1 \% X_0$ per wall within reach

12/22 VCI Vienna. 16-02-2010

Large TPC Prototype: Anode Endplate

Large TPC Prototype: Anode Endplate

Peter Schade, Large TPC Prototye

VCI Vienna, 16-02-2010

13/ 22

Testbeam with Micromegas Module

Micromegas Module

- $\bullet~24$ row with 72 pads each $3.2\times7\,\mathrm{mm}^2$
- resistive foil / carbon loaded kapton $(1 M\Omega/sq)$ \rightarrow charge spreading over pads
- AFTER electronics (T2K)

Peter Schade, Large TPC Prototye

VCI Vienna, 16-02-2010 14/ 22

Testbeam with Micromegas Module

- Resolution at z=0: σ_0 = 54.8±1.6 µm with 2.7-3.2 mm pads (w_{pad} /55)
- + Effective number of electrons: N_{eff} = 31.8±1.4 consistent with expectations

Peter Schade, Large TPC Prototye

VCI Vienna, 16-02-2010 15/ 22

Testbeam with GEM Module

GEM module

- $1.2\times5.4\,\mathrm{mm^2}$ pads staggered
- 28 pad rows (176-192 pads/row)
- about 5000 ch. per module
- 6 layer PCB board
- stretched mounting of GEMs

 \rightarrow A. Sugiyama, Saga. University

Peter Schade, Large TPC Prototye

VCI Vienna, 16-02-2010 16/ 22

Testbeam with GEM Module

Event display with three modules

Readout Electronics

- 3 modules operated
 - \rightarrow in total 3200 channels used
- electronics based on the ALTRO chip (ALICE)

Peter Schade, Large TPC Prototye

 \rightarrow L. Joensson, LUND U.

VCI Vienna, 16-02-2010 17/22

Testbeam with GEM Module

First Results (GEM modules)

• res. parametrized as $\sigma_{\perp} = \sqrt{\sigma_0^2 + D^2/N_{\text{eff}} \cdot z}$ $\rightarrow D/\sqrt{N_{\text{eff}}} = 18.5 \pm 0.2 \,\mu\text{m}/\sqrt{\text{cm}} - \sigma_0 = 51.9 \pm 1.6 \,\mu\text{m}$

⇒ GEM and Micromegas module show similar performance Peter Schade, Large TPC Prototye VCI Vienna, 16-02-2010 18/ 22

GEM Structure & Timepix

→ J. Kaminski, Bonn U.

Peter Schade, Large TPC Prototye

VCI Vienna, 16-02-2010

19/22

GEM Structure & Timepix

 \rightarrow cluster counting to improve ${}^{\rm d\textit{E}}\!/{}_{\rm d\textit{x}}\text{-}{\rm measurement}$

 \rightarrow analysis of testbeam data ongoing

Peter Schade, Large TPC Prototye

VCI Vienna, 16-02-2010

20/22

InGrid technology

InGrid Chip

- produced in CMOS technology
 - \rightarrow silicon pixel chip : $1\,\mu m$ AL grid 50 μm pillars
- one hole per pixel and very flat surface

Peter Schade, Large TPC Prototye

 \rightarrow J. Timmermans, NIKHEF

VCI Vienna, 16-02-2010

Summary and Outlook

- LCPTPC collaboration performs R&D work for a TPC at a future e^+e^- linear collider
 - \rightarrow large TPC prototype built and commissioned
 - \rightarrow part of comprehensive setup for TPC R&D @ DESY
- GEMs and Micromegas are under investigation for the read out of an LC TPC
 - \rightarrow with standard pad or silicon pixel readout
- test beam campaigns in 2009 with both technologies
 - \rightarrow data analysis ongoing
 - \rightarrow first results look very promising
- further testbeam campaigns in 2010
 - \rightarrow 10.000 channels of ALTRO electronics for 3 GEM modules
 - \rightarrow up to seven Micromegas modules with AFTER electronics
 - \rightarrow combination with silicon tracking detectors

