TPC Simulation Tools

Martin Killenberg

Performance Comparison Pixel vs. Pad Meeting

Bonn, 12. Feb. 2010

・ロン ・四 と ・ ヨ と ・ ヨ と …

Requirements

- Timepix resolves every single electron
 - \Rightarrow Simulation and digitisation have to provide this level of accuracy
- Digitisation should provide realistic TPC raw data
- Full detector reconstruction to see performance in PFA?

Overview		
	Mokka	MarlinTPC
Simulation	several	PrimaryIonisationProcessor
(primary charge)	drivers	
Digitisation		Mokka2Voxel TPCCloud SingleElectron
(detector response)	TPCDigi	TPCElectronics
		TimePixDigi
Reconstruction	LEP Tracking	TopoFinder / Hough Transform
		χ^2 -Fitter
Analysis	Marlin Processors (to be written)	

Mokka Drivers

- TPC06 (current default)
 - 200 charge depositions, each exactly in the middle of a pad row
 - Strange cathode (10 mm air gap between half TPCs)
- TPC07¹ (TPC06 with extension for low $P_{\rm t}$ tracks)
 - Charge from particles in low $P_{\rm t}$ tracks (default 10 MeV) is written to a special collection
 - \Rightarrow Dangerous: Delta electrons are not in the charge on the pad rows
 - Geant4 step width limiter (def. 1 mm) plus grouping (def. 5 mm)
 - \bullet Could be used with "low" $P_{\rm t}$ cut set to 3 TeV
- TPC04² (Adrian's driver)
 - Geant4 step width limiter (def. 5 mm)

Questions:

- Is the charge deposition realistic enough for pads (fluctuations)?
- Can the step width be reduced to fit for Timepix?

¹Unofficial bug fixed version: TPC09 ²Unofficial bug fixed version: TPC08

э

For thin absorbers (see Geant4 Physics Reference Manual):

- Each atom has a base energy level E_0 and two excited levels E_1 and E_2 .
- There is an exitation cross section and an ionisation cross section.
- There is a threshold for the energy transfer above which the electron is treated as δ -electron.
- The number of ionisations / excitations per step length are Poissonian distributed for each energy level.
- The energy loss is the sum of all ionisations and excitations.

< ∃ →

PrimaryIonisationProcessor

Number of Clusters per cm

- Distribution derived from HEED
- Parameterised as polynomial approximation

Number of Electrons per Cluster

- Distribution derived from HEED
- Implemented as lookup table

δ -Electrons

- Primary electrons with an energy corresponding to a range of > 100 μm are treated as $\delta\text{-electron}$
- Range and multiple scattering comparable to HEED

PrimarylonisationProcessor vs. Mokka

• Different Mokka drivers are not consistent

• Distributions from Mokka have long tails

A 1

- ∢ ≣ →

PrimaryIonisationProcessor vs. Mokka

- Different Mokka drivers are not consistent
- Distributions from Mokka have long tails
- Distribution from PrimarylonisationProcessor has yet another energy and is very narrow (too narrow?)

Which one is correct?

3. 3

- Detector response is implemented in "intelligent" smearing
- Developed for LEPTracking

Why is this not sufficient?

- Does not provide raw data (ADC counts on electronics channels)
- Completely skips pad geometry
- Skips major parts of the reconstruction
- No event pile-up
- Dead or noisy channels not included

< ∃⇒

э

- Map of voxels resembles readout electronics
- Automatically implements event pile-up
- Background can be added
- Electronics specific converter provides realistic raw data

< A >

→

э

2

<ロ> <同> <同> < 回> < 回>

 Even more detailed simulation of gas amplification

Martin Killenberg (CERN) TPC Simula

TPC Simulation Tools

Simulation

• Mokka or PrimarylonisationProcessor under investigation

Digitisation

- OK for Timepix and pads
- Currently only one pad plane / chip
 - No dead space on module boundaries
 - Timepix is one huge chip covering one quadrant

Reconstruction

- $\bullet\,$ Track finding for Timepix only linear $\rightarrow\,$ extend Hough Transform to helix
- Need good track fitter
- Timepix: Identify and cut $\delta\text{-electrons}$ to have full advantage

Analysis

- Which are the observables we want to look at?
- Momentum resolution
- Spatial resolution
- . . .

