ic

A Study of Higgs Recoil Mass at Ecm=350GeV based on Fast Simulation

Hengne LI <u>Hengne.Li@in2p3.fr</u>

1

SB2009 WG

23-FEB-2010

HENGNE LI

Outline Intent of this work: predict results at Ecm=350GeV with SB2009 beam parameters, serving as inputs to the discussion of the impacts of the SB2009 beam parameters on ZH study. Work Flow: **GUINEA-PIG Beam Simulation** PYTHIA Event Generation Fast Simulation of ILD Analysis Further reading: accompany notes of this work are provided on the

2

SB2009 WG

agenda

HENGNE LI

23-FEB-2010

Beam Simulation

Using GUINEA-PIG with SB2009 Beam parameters given by Brian Foster's talk on SB2009 Meeting at DESY 2009

Event Generation

- Event generation using PYTHIA:
 - □ Beam Pol. (e-: -80%, e+: +30%) at Ecm=350GeV

Reaction	Cross-Section			
$ZH ightarrow \mu \mu X$	7.1 fb			
WW	346 fb			
ZZ	$165 { m ~fb}$			

Estimate the Integrated Luminosity for various sets of beam parameters according to Peak Luminosities: taken RDR 500 as reference

$$\mathcal{L}_{\mathrm{int}} = rac{\mathcal{L}_{\mathrm{peak}}}{\mathcal{L}_{\mathrm{peak},\mathrm{RDR500}}} \cdot \mathcal{L}_{\mathrm{int},\mathrm{RDR500}}$$

□ Resulting numbers:

HENGNE LI

23-FEB-2010

	RDR			SB2009 w/o TF				SB2009 w/ TF			
$\sqrt{s} \; (\text{GeV})$	250	350	500	250.a	250.b	350	500	250.a	250.b	350	500
Peak L $(10^{34} \text{cm}^{-2} \text{s}^{-1})$	0.75	1.2	2.0	0.2	0.22	0.7	1.5	0.25	0.27	1.0	2.0
Integrated L (fb^{-1})	188	300	500	50	55	175	375	63	68	250	500

4

A dedicated Fast Simulation Algorithm is developed for the ILD concept

- \Box Parameterize the Momentum Resolution as a function of P and $\cos\theta$
- The MC true momentum of a given muon is smeared according to this parameterization.

Comparison Before and After Detector Simulation: ZH at 350 GeV

□ Comparison Before and After Detector Simulation: ZH at 250 GeV

23-FEB-20

□ Comparison RDR 250 vs. 350

23-FEB-2010

M_{recoil} (GeV)

□ Comparison SB2009 w/o TF 250 vs. 350

 \Box Comparison All the 4:

Analysis

□ Same analysis procedure as for the LOI:

Cut-Chain

- (1) $|\cos \theta_{\mu}| < 0.99$
- (2) $P_{Tdl} > 20 \text{ GeV}$
- (3) $M_{dl} \in (80, 100) \text{ GeV}$
- (4) $acop \in (0.2, 3.0)$
- (8) $M_{recoil} \in (115, 150) \text{ GeV}$
- (9) Likelihood Further Rejection
 - (using variables P_{Tdl} , $\cos \theta_{dl}$, M_{dl} and acol)

□ Numbers of signal and bkgs: Ecm=350GeV

HENGNE LI

23-FEB-2010

Reactions	$ZH \to \mu\mu X$	ZZ	WW
N _{initial}	1248	29k	61k
$N_{selected}$	633	658	30

11

SB2009 WG

Results

Beam Par	$\mathcal{L}_{\text{int}} \text{ (fb}^{-1})$	ϵ	S/B	$M_H ~({ m GeV})$	σ (fb) $(\delta\sigma/\sigma)$
RDR 250	188	55%	62%	120.001 ± 0.043	$11.63 \pm 0.45 \ (3.9\%)$
RDR 350	300	51%	92%	120.010 ± 0.084	$7.13 \pm 0.28 \; (4.0\%)$
SB2009 w/o TF 250b	55	55%	62%	120.001 ± 0.079	$11.63 \pm 0.83 \ (7.2\%)$
SB2009 w/o TF 350 $$	175	51%	92%	120.010 ± 0.110	$7.13 \pm 0.37 (5.2\%)$

Observation from me:

- □ (1) S/B higher at 350 GeV than 250GeV: due to better bkg suppression
- (2) RDR 250 vs. 350: Xsec similar; mH worse by a factor of 2 at 350GeV

13

- (3) SB2009 w/o TF 250 vs. 350: Xsec better at 350GeV; mH worse by a factor of 1.4 at 350GeV
- From you:

HENGNE LI

BKG suppression

23-FEB-2010

15

SB2009 WG

BKG Suppression

Higgs Recoil Mass 250 vs 350

