Project X: A Multi Megawatt Proton Source at Fermilab

AES Site Visit Jim Kerby 24 February 2010

Project XStrategic Context: Fermilaband the World Program

Fermilab currently operates the highest energy collider, and the highest power long baseline neutrino beam, in the world. In 2010:

- LHC has captured the energy frontier
 - J-PARC is initiating a competitive neutrino program

Project X Strategic Context: Fermilab Long Range Plan

- Fermilab is the sole remaining U.S. laboratory providing facilities in support of accelerator-based Elementary Particle Physics.
- The Fermilab long-term strategy is fully aligned with the HEPAP/P5 plan:
 - Energy and intensity frontiers share strong reliance on accelerators

Evolution of the Fermilab Accelerator Complex

- A multi-MW Proton Source, Project X, is the linchpin of Fermilab's strategy for future development of the accelerator complex.
- Project X provides long term flexibility to pursue a variety of scientific opportunities
 - Energy Frontier:
 - $\text{Tevatron} \rightarrow \text{ILC or Muon Collider}$
 - Technology alignment
 - Fermilab as host site for ILC or MC
 - Intensity Frontier:
 - $NuMI \rightarrow NOvA \rightarrow LBNE/mu2e \rightarrow multi-MW Proton Source \rightarrow NuFact$
 - Continuously evolving world leading program in neutrino physics and other beyond the standard model phenomena

Mission Need

- The P5 report defines mission need for a multi-MW proton source based on :
 - A neutrino beam for long baseline neutrino oscillation experiments
 - 2 MW proton source at 60 - 120 GeV
 - High intensity, low energy protons for kaon and muon based precision experiments
 - <u>Operations simultaneous</u> with the neutrino program.
 - A path toward a muon source for a possible future neutrino factory and/or a muon collider at the Energy Frontier.
 - Requires upgrade potential to 2-4 MW at ~8 GeV.

Initial Configuration-2

- Project X Design Criteria
 - -2 MW of beam power over the range 60 120 GeV;
 - Simultaneous with 2 MW beam power at 3 GeV;
 - Compatibility with future upgrades to 2-4 MW at 8 GeV

Project X Accelerator Requirements: Rare Processes

	Proton Energy (kinetic)	Beam Power	Beam Timing
Rare Muon decays	2-3 GeV	>500 kW	1 kHz – 160 MHz
(g-2) measurement	8 GeV	20-50 kW	30- 100 Hz.
Rare Kaon decays	2.6 – 4 GeV	>500 kW	20 – 160 MHz. (<50 psec pings)
Precision K ⁰ studies	2.6 – 3 GeV	> 100 mA (internal target)	20 – 160 MHz. (<50 psec pings)
Neutron and exotic nuclei EDMs	1.5-2.5 GeV	>500 kW	> 100 Hz

IC-2v1.0 Technology Map to 2GeV

Project X

IC-2v2.0 Technology Map to 3GeV

• Current configuration under consideration:

Project X Joint PX/ILC/SRF Strategy

- Project X shares 1.3 GHz technology with the ILC
 - Project X requires 9-20 ILC-like cryomodules, depending upon the final frequency configuration
 - Design is migrating at the detail level from the ILC
 - CW vs pulsed
 - 18 MV/m vs 31.5 MV/m
 - Perhaps lower beta and lower loss cavity shape
- However, there is very significant infrastructure and expertise on the ILC program that can be applied
 - Close coordination between Project X and GDE
 - Common development effort
 - Shared facilities for assembly and testing
 - Yield vs gradient remains a key metric

Project X Joint PX/ILC/SRF Strategy

Industrialization

- Production of 1.3 GHz CMs for Project X over a~4 year period represents a significant step beyond current capabilities; however, the production rate remains well <u>below</u> that required by ILC.
- ⇒This activity could represent the initial phase of an industrialization buildup for ILC (in the U.S.).
- Cryomodule Assembly Plan
 - CM1: TESLA Type III (2009)
 - Based on DESY supplied cavities
 - CM2: TESLA Type III (2010)
 - Based on U.S. supplied cavities
 - CM3: Type IV.1 (2011)
 - U.S. supplied cavities
 - CM4: Type IV.2 (2012)
 - Project X prototype

Near Term Strategy (~Next 6 months)

- Establish a cost-range for Project X based on variations in configuration and performance
- Update R&D plan to configuration IC-2v2
- Retain RCS within the estimate but limit work to critical issue(s)
- Continue work on outstanding technical questions
 - Identify a baseline concept for the chopper
 - RCS injection
 - Identification of the cost breakpoint between RCS and pulsed linac
- Investigate options for pairing a 3-8 GeV pulsed linac to CW front end
- \Rightarrow All info. available for CD-0 by late spring

Long-Term Strategy

- DOE has advised us that the earliest possible dates are:
 - PED funding: FY2012
 - Construction start: FY2015
- We believe that we could construct Project X over a five year time period, assuming a commensurate funding profile

 \Rightarrow Project X could be up and running ~2020

Summary

- Project X is central to Fermilab's strategy for future development of the accelerator complex:
 - Intensity Frontier: World leading program in neutrinos and rare processes; Fermilab as potential Neutrino Factory site
 - Energy Frontier: Aligned with ILC technology development; Fermilab as potential site for ILC or a Muon Collider
- Initial configurations, and preliminary cost estimates, established
 - >2 MW at 60-120 GeV, simultaneous with up to 2 MW for rare processes program
 - Upgradable to 2-4 MW at 8 GeV
- Integrated effort on Project X, ILC, and Muon Facilities
- Project X could be constructed over the period ~2015 2019
- Collaboration formed to undertake the R&D program

Backup Slides

Initial Configuration-2 Performance Goals

Linac			
Particle Type	H-		
Beam Kinetic Energy	3.0	GeV	
Average Beam Current	0.67	mA	
Linac pulse rate	CW		
Beam Power	3000	kW	
Beam Power to 3 GeV program	1920 (kW	X
RCS			
Particle Type	protons		\backslash
Beam Kinetic Energy	. 8.0	GeV	
Cycle time	0.1	sec	· · · ·
Particles per cycle to MI	2.6×10 ¹³		simultaneous
Beam Power to 8 GeV program	190 🌔	kW	
Main Injector/Recycler			
Beam Kinetic Energy (maximum)	120	GeV	
Cycle time	1.4	sec	
Particles per cycle	1.6×10 ¹⁴		_ /
Beam Power at 120 GeV	2100 (kW	

Page 18