

Recent result of ERL injector 2-cell cavities.

K. Watanabe (KEK) and STF cavity group.21st ILC cavity group meeting, 16/March/2010

About ERL injector 2-cell cavities

superconducting rf test facility

Proto-type model (fabrication at 2008)

ERL injector 2-cell cavity #1 (KEK, made by MHI)

Four HOM coupler equipped beam pipe for strong damping. (Two antenna type and two loop type HOM couplers)

1st V.T. with HOM pickup probe was done at April 2009. (See TTC meeting in Orsay, June 2009)

2nd V.T. without HOM pickup probe was done at February 2010.

Proto-type model (fabrication at 2009)

ERL injector 2-cell cavity #2 (KEK, made by MHI)

Five loop-type HOM coupler equipped beam pipe to obtain more strong damping.

1st V.T. without HOM pickup probe was done March 2010.

2nd V.T. with HOM pickup probe will be done April 2010.

Two step test for both cavities: (1) Without HOM pickup probe, (2) With HOM pickup probe.

To estimate the cavity performance (EBW) and the HOM coupler performance (RF design).

Surface treatment: 28 Jan 2010

EP-2 : 20um, low current density (40 mA/cm2) with Air condition

1st water rinsing with Air condition. 90 min

FM-20 rinsing (2%), 50 degC 1 hour

Hot bath with UPW, 50 degC, 1 hour

HPR: Total time 9 hour

Baking: 100 degC, 48 hour

Rres = 38 n Ω . (Measured)

SUS flange loss = $23 \text{ n}\Omega$. (Calculated by HFSS)

- •The reason of limitation was a heating of one loop-type HOM coupler at maximum field.
- •No quench at cells.

ERL-injector 2-cell cavity #2 without HOM pick-up probe, 1st V.T. at 04 Mar 2010

superconducting rf test facility

Surface treatment: 22 Feb 2010

EP-2: 20um, low current density (30 mA/cm2)

with N2 gas flow

1st water rinsing with N2 gas flow. 90 min

FM-20 rinsing (2%), 50 degC 1 hour

Hot bath with UPW, 50 degC, 1 hour

HPR: Total time 9 hour

Baking: 100 degC, 48 hour

Rres = 40 n Ω . (Measured)

SUS flange loss = $23 \text{ n}\Omega$.

(Calculated by HFSS)

- •The reason of limitation was a heating of one loop-type HOM coupler at maximum field.
- •No quench at cells.

Correlation of Geometrical spot size and hating (Rough estimation)

superconducting rf test facility

Example: #2 cavity, 1-cell equator, outside weld area, t=076deg.

The information of geometrical spot size and field was updated.

Larger, deeper (or higher) pits (or bumps) seem to cause quenches.

- * Not all of the optically observed detects lead to problems.
- * Note: preliminary results of analysis which utilizes *both* the pimode and pass-band measurements.

STF K. Watanabe, Sept. 22 2009, SRF2009 in Belrin

150

100 200 300 400 500 600

Sample: MHI-01 ~ MHI-09, AES-01: 10 cavities

Diameter [um]

Number of cell = 90 cells, Number of detected spot = 49 spots

Depth or Height [um]

- Two ERL injector 2-cell cavities were achieved Eacc = 43.7 MV/m (#1) and Eacc = 40.9 MV/m (#2) without HOM pickup probe.
- * The reason of limitation of both cavities was a heating of one loop-type HOM coupler at maximum field.
- The information of geometrical spot size and amount of field was updated.
- •We tried to make the low current density EP for two 2-cell cavities. The results were very successful.

Inspection of #1 cavity after vertical test.

superconducting rf test facility

