#### **PFA studies**

Remi Zaidan The University of Iowa

# Introduction

- I study tracks and jets separately:
  - Track: Shower associated to a charged track.
  - Jet: Shower associated to several tracks.
- Efficiency:
  - Truth hit fraction included in a shower.
- Purity:
  - Reconstructed hit fraction belonging to the truth particle.
- Core efficiency/purity:
  - Efficiency and purity defined without accounting the shared hits.
- Real efficiency/purity:
  - Efficiency and purity defined with all hits.

#### CPU time issues

 The algorithm is using up to 7-8 iterations while performance changes get small after 4 iterations

| Iterations | CPU time   |
|------------|------------|
| 2          | 18 s/event |
| 4          | 22 s/event |
| 10         | 48 s/event |





- The cone algorithm does what it is supposed to do for signal but not for background.
  - Studied the behavior of the PFA without the cone algorithm
  - Studied few variables that might improve the algorithm







**Tracks** 

#### Jets



- Without the first cone algorithm:
  - Number of jets increase by a factor of ~2.5
  - Tracks above 15 GeV are basically merged into jets (~80 %)

**Tracks** 

3

2

Jets

Tracks Only looking at 0.18 0.16 0.16 Baseline 0.14 tracks, it seems 0.14 No First Cone 0.12 0.12 0.1 that removing 0.1 0.08 0.08 the cone is good 0.06 0.06 0.04 0.04 0.02 0.02 Opposite -10 -8 -2 -6 0 2 8 10 6 conclusion when (E-P)/σ(E) ILAUNS 0.16 0.3 looking at jets: Baseline 0.14 0.25 No First Cone 0.12 Bad merging of 0.2 0.1 tracks into jets 0.08 0.15 0.06 0.1 0.04

0.02

0



**Tracks** 

Main component agrees better with the diagonal without the cone.

Area below the diagonal gets populated: Bad merging of tracks into jets



Track momentum

Track momentum

100

100

Jets

**Tracks** 

On average better efficiency and purity when the cone algorithm is dropped

Large tails at low efficiency and purity appear: Bad merging of tracks into jets



#### Jets



**Tracks** 

#### Jets

On average better efficiency and purity when the cone algorithm is dropped

Large tails at low efficiency and purity appear: Bad merging of tracks into jets



#### Tried to define a likelihood using geometrical variables.



Correlation (especially for background events) are rather strong





# Plans

- Understand the behavior of jet merging.
- Try an algorithm change:
  - Allow cluster sharing when building the showers.
  - Come up with a criteria to solve ambiguities later.