S1-G Cryomodule Thermal Tests (Proposal)

KEK, Norihito Ohuchi

Measurements of thermal characteristics of Module A and C

- Scheduled test period for thermal measurements
 - 1 week before summer shut down
 - Preparatory measurement of the static heat load of the Module-A and C
 - 3 weeks after summer shut down

Heat load measurements

- Heat loads of the modules are mainly measured by the mass flow rate of evaporated 2K LHe.
- Static heat load of Module A and C
- Dynamic heat load of DESY, FNAL and KEK cavities at the average gradient of 31.5 MV/m
- Heat loads at 4K are measured during the cool-down of modules (back-up measurement).

• Temperature profile

- The temperature profiles of the components are automatically measured during all test period.
 - Cool-down and warm-up stages (two times)
 - Operating conditions of cavities.
- Temperature measurement by Cernox, PtCo and CC.

• Position change of cavities and GRP during cold test

- Positions of KEK cavities by Wire Position Monitor (WPM)
- Positions and deformations of GRPs of Module A and C by WPM and strain gauges
- Positions of GRP of Module A by Laser Position Monitors
 - The measurement will be performed in the first experimental term. In the second term, the holes on the vacuum vessel and 80K shield are closed for the heat load measurements.

Heat load measurements-1

- Mass flow rate of evaporated 2K LHe is measured by the volume flow meter at room temperature and atmosphere pressure after the pump units.
 - The precision of the measurement is in the range of 0.2 W from the STF experiment .
 - The measuring range of the volume flow meter is 0-3.2g/s. The smaller size flow meter will be prepared.
- Static heat load measurement of Module A and C
 - The static heat load of Module A and C is measured at the same time, not separated.
 - Measuring period at 2K: 1 week in the second test term
 - Two days: static heat load measurements
 - Two days: the calibration of these measurements by the heater
 - One day: preparation of the measurements
 - The measurement will be scheduled after the cavity performance tests in the second term.
 - Preparatory measurement of static heat load during the last week in the first term: 1 week
 - The Module-A has holes for measuring the movement of the gas return pipe by the laser position monitors.
 - The static heat load measurements and the calibration by the heater will be done for two days, respectively.
 - Heat load measurements at 4K during the cool downs in the first and second terms.
 - Three days: before cooling the system down to 2K and after keeping the level of 4K liquid helium at the operating condition, the heat loads of two modules and 2K cold box will be measured.
 - This measurements are required for confirmation of system soundness in the thermal performance.

Heat load measurements-2

- Dynamic heat load measurement of DESY, FNAL and KEK cavities at the average field gradient of 31.5 MV/m
- At the first stage:
 - Dynamic heat load measurement of each cavity at its maximum operating field.
 - Heat load of each cavity in the detuned condition should be measured in the same day after the dynamic measurement.
 - One day for measuring one cavity in the maximum field and the detuned conditions is required.
 - In total, the period of 8 days should be scheduled.
- At the second stage:
 - Dynamic heat load of eight cavities, all together at the average field gradient of 31.5 MV/m.
 - Two days will be requested.
- For these measurements, the cryogenic system need to be a stable condition thermally. For one parameter change, it takes two hours for the system to be stable.

Temperature profiles of the components

- Temperature profiles of the components are measured during the cool-down and warm-up, and in parallel with the heat load measurements.
- The measured temperature profiles are compared with thermal calculation results of the components.
- Temperature sensors for Module-A and C:
 - Cernox (2K 100K) : 50
 - Calibrated carbon resistor (2K 100K) : 32
 - PtCo (2K 300K) : 51
 - CC thermocouple (70K 300K) : 68

Temperature sensors on cavity jacket and input coupler

Tag. No	Position of measurement					
TCC100	Helium Vessel					
TKC101	HOM coupler in the input coupler side-top					
TKC102	HOM coupler in the input coupler side-bottom					
TKC103	HOM coupler in the non-input coupler side-top					
TKC104	HOM coupler in the non-input coupler side-bottom					
TCC105	Piezo					
TCC110	Connection area of input coupler with beam pipe					
T00111	5K thermal intercept of input coupler (beam pipe side)					
T00112	5K thermal intercept of input coupler (body)					
TCC114	5K thermal intercept of input coupler (cooling pipe side)					
TTC115	5K thermal intercept of input coupler (intercept side)					
TTC130	80K thermal intercept of input coupler (beam pipe side)					
TTC131	80K thermal intercept of input coupler (body)					
TTC132	80K thermal intercept of input coupler (vacuum vessel side)					
TTC133	80K thermal intercept brade of input coupler (coupler side)					
TTC134	80K thermal intercept brade of input coupler (cooling pipe side)					
TTC135	Input coupler (room temperature and in the vacuum vessel)					

Cernox:7, Carbon resistor:4, CC: 6 Cavity vessel= 1 Input coupler= 11 (including thermal intercepts) HOM coupler= 4 Piezo= 1

2010/03/29

Sensors on GRP and support posts

PtCo : 20, CC thermocouples : 12 GRP= 16 Support Post= 20

For measuring the GRP deformation Strain gauge: 24 positions (3 positions along the GRP axis, and 4 azimuthal positions for one GRP)

Module-A GRP

Tag No	Position of measurement	Mod		
TPA700	Upstream-top (Module-A connection side)	1000		
TPA706	Upstream-bottom	GRF		
TPA710	Center-top			
TPA716	Center-bottom			
TPA717	Connection area between S.P and GRP(F)			
TPA718	Connection area between S.P and GRP(M)			
TPA720	Downstream-top (end flange side)			
TPA726	Downstream-bottom			
STA730	O degree in the side of Upstream			
STA733	90 degree in the side of Upstream			
STA736	180 degree in the side of Upstream			
STA739	270 degree in the side of Upstream			
STA740	0 degree in the center			
STA743	90 degree in the center			
STA746	180 degree in the center			
STA749	A749 270 degree in the center			
STA750	A750 O degree in the side of end flange			
STA753	90 degree in the side of end flange			
STA756	180 degree in the side of end flange			
STA759	270 degree in the side of end flange			

lodule-C	Tag No	Position of measurement
	TPC700	Upstream-top (Module-C connection side)
iRP	TPC706	Upstream-bottom
	TPC710	Center-top
	TPC716	Center-bottom
	TPC717	Connection area between S.P and GRP(F)
	TPC718	Connection area between S.P and GRP(F)
	TPC720	Downstream-top (end flange side)
	TPC726	Downstream-bottom
	STC730	O deparee in the side of Upstream
	STC733	90 degree in the side of Upstream
	STC736	180 degree in the side of Upstream
	STC739	270 degree in the side of Upstream
	STC740	0 degree in the center
	STC743	90 degree in the center
	STC746	180 degree in the center
	STC749	270 degree in the center
	STC750	O degree in the side of end flange
	STC753	90 degree in the side of end flange
	STC756	180 degree in the side of end flange
	STC759	270 degree in the side of end flange

ILC10-GDE @Beijing

2010/03/29

Temperature sensors on thermal shields

PtCo 13

Cu-Constantan thermocouple 12

Position measurement of cavities and GRP

Measurement of position of cavities and GRP by WPM

- Module-C
 - 5 WPMs are assembled on the GRP.
- Module-A
 - 5 WPMs on the GRP and 2 WPMs for each cavity are assembled. In total, 13 WPMs.

Measurement by laser position monitor

The laser position monitors were applied for measuring the change in the GRP shape of Module-B.

3 laser position monitors are used for measuring the GRP deformations of Module-A during the cold test before summer shut-down. Precision of the measurement is in the level of a few micro-meter.

- For this measurement, the thermal radiation shields need to have holes to introduce laser to the GRP.
- Measurement with these monitors are scheduled in the first test term.
- In the second term, the windows on the vacuum vessel and the holes on the 80K shield are closed with the flanges and the Super Insulation.

Laser position monitors for measuring the GRP positions

Cool-down of Module-A by STF cryogenic system

Cooling was performed during the normal working time:

- **1.** The first step of cool-down of the Module-A with four cavities
 - In the first two days, four cavities and the GRP were cooled to 200 K by helium gas at 90 K.
 - The total mass flow rate was 1.0 g/s, and the typical cooling speed of the cavities was 7.3 K/h.
- 2. Cool-down from 200 K to 4K

• Liquid helium at 4 K was directly transferred from the liquid helium Dewar of 2000 L on the ground level to the cryomodule in the tunnel.

- In the cooling process, the cooling speed of cavities was 12.5 K/h.
- The total time for cooling four cavities from room temperature to 4K was 49 hours.

During the thermal tests of S1-G cryomodules:

- Cooling 80 K thermal shields will be kept for 24 hours.
- Supplying and pumping LHe will be performed from 8:00 to 22:00 or for 24 hours.

Time schedule for the thermal test of S1-G modules

In the first test term

Cool-down and thermal test at 4K

Mon	Tue	Wed	Thu	Fri	Sat	Sun				
1	Cool-down by	90K helium gas		,						
Cool-dowr	n by LHe	Heat load me	eas. at 4K	Pumping to 2K	•					
Thermal test at 2K										
Re-cooling to 2K Heat load meas. at 2K Calibration meas. at 2K by heater										

In the second test term

Cool-down and thermal test at 4K are same as in the first term

Thermal test at 2K

