

Forward Tracking at ILD Ruminations by the Vienna Group

Winfried A. Mitaroff

ECFA-ILC-CLIC Joint IWLC 2010

Geneva, 18 - 22 Oct. 2010

What is the "forward region"?

- Very forward region
 - -5° < θ < 11.5°: only FTD measurements contributing,
 - Range of FTD 1 (2) starts where that FTD 6 (7) ends.
- Intermediate region
 - $-11.5^{\circ} < \vartheta < 25.5^{\circ}$: complex mix of VTX + FTD + TPC,
 - − FTD: only FTD 1 ... 3, plus FTD 4 until θ < 16.5°,
 - TPC: 10 pad-rows @ 11.5⁰ ... 100 pad-rows @ 25.5⁰.
- Barrel + FTD 1 only
 - $-25.5^{\circ} < \vartheta < 36.7^{\circ}$: VTX + FTD 1 + SIT + TPC.
- ETD: 9.8° < 36.9°
 - Ignored by track fitting: cannot contribute to precision,
 - Useful for PFA (pattern recognition link to fwd. ECAL).

The ILD_00 detector layout

Tasks w.r.t. forward tracking

- 1. FTD geometry description, \ not
- 2. FTD drivers in Mokka, } discussed
- 3. FTD digitizings in Marlin. / here
- 4. FTD stand-alone track search (very fwd. and intermediate regions, 5° < θ < 25.5°),
- 5. TPC-supported track search (optional in intermediate region, 11.5° < ⁰ < 25.5°),
- 6. DAF-based final hit associations,
- 7. Precision forward track fit.
- Region 25.5⁰ < ¹/₂ < 36.7⁰ is "mostly barrel" (VTX, SIT, TPC) with only one FTD 1 ⇒ barrel or fwd. task?

Fwd. track search strategies

Stand-alone in FTD:

- This is the only possible strategy in the very forward region,
- Various algorithms exist which to chose needs careful study,
- For small θ, hits from beamstrahlung-induced background may cause further problems (we need a reliable estimate),
- Layout for optimized track resolution (e.g. strip orientation and stereo angle) not necessarily optimal for track search.

Combined TPC–FTD:

- This may be an optional strategy for the intermediate region:
- Inward extrapolation of tracks found by local PR in the TPC,
 FTD hits tested against and associated to them,
- Timing problems hopefully solved by "time stamps".

Soft hit association:

 Hits may be shared among tracks, and the final association relegated to track reconstruction based on the DAF.

M. Valentan (SiLC, Santander 2008)

Polar angle $\vartheta=7^\circ$ (hits all FTDs), absolute momentum $p=250\,{\rm GeV}/c$ (design energy), 1000 muons per point

(Stereo angle w.r.t. radial vector)

Forward track reconstruction

Algorithms used:

- Based on the Kalman Filter, with robustification by the adaptive Deterministic Annealing Filter (DAF):
- (1) Testing and updating the track hypothesis (hit associations) by identifying and removing "outliers", and resolving ambiguous associations from the track search,
- (2) Performing a precision track fit.

Special features:

- Flexible track propagation in the complex intermediate region,
- Energy loss of electrons modeled by the Gaussian Sum Filter
 (GSF) ⇒ requires extension of the LCIO data model,
- Magnetic field distortions by the "anti-DiD" taken into account (small "Billoir corrections" on helices, or Runge-Kutta).

Track model for the GSF

- Energy loss of electrons and positrons is dominated by bremsstrahlung. It is a stochastic process which can be modeled by the Bethe-Heitler formula.
- A track \mathbf{p}_k reconstructed with proper treatment of bremsstrahlung is described by a mixture of M_k Gaussian measurement vectors \mathbf{p}_k^i : its p.d.f. is

$$\wp(\mathbf{p}_k) = \sum_{i=1}^{M_k} \gamma_k^i \cdot \Gamma(\mathbf{p}_k; \mathbf{p}_k^i, \mathbf{V}_k^i), \qquad \sum_{i=1}^{M_k} \gamma_k^i = 1$$

with $\Gamma(\mathbf{p}_k; \ldots)$ being a multivariate Gaussian p.d.f. of mean \mathbf{p}_k^i and covariance matrix $\operatorname{cov}(\mathbf{p}_k^i, \mathbf{p}_k^i) \equiv \mathbf{V}_k^i$. In general the means need not to be equal.

- Each component $i=1\dots M_k$ of the mixture corresponds to one hypothesis on the virtual measurement, with the weight γ_k^i being its probability.
- In practice, a number of components $M_k \leq 6$ is sufficient.

References: R. Frühwirth: Computer Physics Comm. **154** (2003) 131.

W. Adam, R. Frühwirth, A. Strandlie, T. Todorov: CMS note 2005/001, CERN.

Fwd. tracking implementation

- The user API should be common for barrel and forward tracks.
- However, the implementation is <u>suggested</u> to be separate and complimentary for the barrel and the forward regions:
 - Optimal track search algorithms will differ for barrel and fwd.,
 - Internal track representations may differ (e.g. 1/p_⊤ vs. 1/P),
 - Coordinated independence of the two programming teams.
- A small MarlinReco control processor for the required top-level steering "barrel vs. fwd. calls", transparent to the user.
- Coordination is enhanced by a common skeleton toolkit (GenFit or KalTest), and a pool of utility classes and libraries.
- Both implementations will rely on common interfaces, e.g. for
 - Using available results from a previous track search in TPC,
 - Persistency by the new LCIO data model, augmented for GSF,
 - Interfacing to the new GEAR geometry toolkit.

Sharing of responsibilities

In discussions at the ILD Software Workshop (DESY, July 2010) and thereafter, we agreed on a sharing of tasks for the new ILD tracking:

- DESY Hamburg: overall coordination, all barrel tracking;
- Spain (Santander, Valencia) and HEPHY Vienna: all forward tracking, with the sub-tasks:
 - (1-3) FTD geometry, Mokka drivers, digitization: Spain,
 - (4) FTD stand-alone fwd. track search: Spain and Vienna,
 - (5) TPC-supported fwd. track search: Vienna,
 - (6,7) DAF-based fits, precision track fit: Vienna.

Start of active work coinciding with the AIDA kick-off (Feb. 2011).

Manpower & funding aspects

Commitment:

- Expect a diploma student, or a PhD student in his/her first year, to start work on sub-tasks 4-7 in Feb. 2011.
- If possible, to be extended by a follow-up study of background radiation in the forward region, starting 2012.

AIDA Proposal:

- Within EU's fp7, time frame 2011-14, submitted Dec. 2009, approved April 2010, Kick-off Feb. 2011. 9 Work Packages.
- WP 2 "Common Software Tools" (F. Gaede, P. Mato):
- Task 2 of 2: "Reconstruction Toolkits for HEP", Sub-task 1 of 4: "Tracking Toolkit" – DESY, Santander, Valencia, Vienna.
- Clear separation generic vs. detector-dependent functionality.
- Expect 1/3 refunding for 4 student-years, and travelling costs.

Off-topic: news from Vienna

- Vertex Reconstruction Toolkit (RAVE):
 - Implemented a Gaussian Sum Filter (GSF) for processing tracks fitted with a GSF (see my talk at TILC '09). Source level compatibility of the algorithms with those of CMS is beneficial for quick inclusion of further improvements. Support and maintenance kept alive; latest version in the repositories:
 - http://projects.hepforge.org/rave/
 - http://stop.itp.tuwien.ac.at/websvn/ click marlinrave
- Fastsim Tool ("LiC Detector Toy", LDT):
 - Used for ILD's LoI and CLIC detectors' CDR. Improvements foreseen to be done next: implementation of a GSF, and of inclined and conical surfaces. Documentation (User's Guide 2.0) and source codes in the repository:
 - http://stop.itp.tuwien.ac.at/websvn/ click lictoy
- A new tracking and vertexing "bible":
 - A. Strandlie, R. Frühwirth: Track and vertex reconstruction: from classical to adaptive methods. Rev.Mod.Phys. 82 (2010) 1419.
 - http://wwwhephy.oeaw.ac.at/p3w/ilc/reports/ASEpub/10_RevModPhys.pdf