# Hadronic showers in the SiW ECAL (with 2008 FNAL data)

#### **Philippe Doublet**



April 19th, 2010

Philippe Doublet (LAL)

# Introduction

- 2008 FNAL data used
  - Pions of 2, 4, 6, 8 and
    10 GeV
  - Cuts on scintillator and Cherekov counters
- The SiW ECAL
  - ~1λ<sub>I</sub>: ½ of the hadrons interact
  - 1x1 cm<sup>2</sup> pixels: tracking possibilities
  - 30 layers with 3 different
    W depths



### Procedure



- 1. Follow the MIP track
- 2. Find the interaction layer
- 3. Distinguish the types of interactions
- → At low energies, finding the interaction and its type requires energy deposition and high granularity

# InteractionFinder algorithm 1

- For « strong » interactions
  - $E_i, E_{i+1}, E_{i+2} > Ecut$
  - Very simple and works very well at energies ~10 GeV
  - Does not really need high granularity but longitudinal segmentation helps



# InteractionFinder algorithm 2

- For « weak » interactions
  - First criteria not satisfying (fails a lot when energy decreases)
  - Use the relative increase of energy:
    - $(E_i + E_{i+1})/(E_{i-1} + E_{i-2}) > Fcut$
    - $(E_{i+1}+E_{i+2})/(E_{i-1}+E_{i-2}) > Fcut$
  - Requires 5 layers: 2 before, 3 after (longitudinal segmentation)



# InteractionFinder algorithm 3

- Introduce classification:
  - Strong: « FireBall » class
  - Weak: 2 cases
    - If E<sub>i</sub><sup>MIP-track neighbours</sup> / E<sub>i</sub> > 0.5 (prevents backscattering) Then « FireBall » class (transverse segmentation)
    - 2. If (E<sub>i+2</sub>+E<sub>i+3</sub>)/(E<sub>i-1</sub>+E<sub>i-2</sub>) < Fcut (it was a local increase) Then « Peak » or « Pointlike » class (longitudinal segmentation)
  - If nothing, then « MIP » class



Pointlike interaction: πp scattering

# **Optimising Ecut and Fcut**

- Try interaction conditions for each event for a set of {Ecut,Fcut}
- 2. Fit the difference layer found  $-MC \rightarrow get \sigma$ and N (number of interactions found)
- 3. Trace for all combinations  $\sigma$  vs N
- Get the best combination to get a small σ and a high N



# After optimisation

 We care about the interactions found within +/- 1 layer (+/- 2 layers) w.r.t. the interaction layer in the MC

|        | +/- 1 layer | +/- 2 layers |
|--------|-------------|--------------|
| 2 GeV  | 56%         | 67%          |
| 4 GeV  | 60%         | 73%          |
| 6 GeV  | 62%         | 76%          |
| 8 GeV  | 64%         | 78%          |
| 10 GeV | 72%         | 84%          |

David Ward's results down to 8 GeV:

~70% inside +/- 1 layer

90% inside +/- 2 layers

(Ecut criteria made a bit more complex: 3 out of 4 layers must satisfy cut)

### Rates of interaction from 2 to 10 GeV: data vs MC (QGSP BERT)

• After optimisation of Ecut and Fcut for each energy







Good agreement between data and MC

Data reconstruction and MC digitisation are official releases

# A look at longitudinal and transverse profiles

- Longitudinal profiles are drawn with 60 layers equivalent to those in the first stack (i.e. one layer in stack 2 is divided in 2 layers and one layer in stack 3 is divided in 3 layers)
- Transverse size is calculated from the interaction point and weighted by the energy

### Total longitudinal profiles: data vs MC (with shower structure)











Reasonable agreement is found Blue = electrons contributions Green = protons Red = pions Black = others

Longitudinal profiles sorted by kind



### Longitudinal profiles sorted by kind



### Total transverse profiles: data vs MC (QGSP BERT)



### Transverse profiles sorted by kind



### Transverse profiles sorted by kind



### Another interesting feature

- « MIP » events contain two kind of events
- They can be separated and classified into REAL MIPs and pion scattering using the extrapolated MIP track (transverse segmentation)

#### → development of some particle flow technique seem possible



# Conclusion

- We combine energy and high granularity to classify hadronic interactions and even see them clearly
  - The transverse profiles agree very well
  - The longitudinal profiles are slightly higher for MC certainly due to a conversion factor problem
  - The 3 types of interaction allow to separate clearly the profiles and another can even be identified
- Results stable obtained with official releases
- Other physics lists available
- CAN note in preparation to be ready for CALOR2010

# Software versions (all official)

- For reconstruction of FNAL runs (done by Alexander Kaplan):
  - Calice\_userlib v04-10
  - Calice\_reco v04-06
- For digitisation of MC samples (done by Lars Weuste):
  - Calice\_userlib v04-10
  - Calice\_reco v04-06

→ Same versions