SLAC Production of WHIZARD Data Sets

Tim Barklow SLAC Apr 20, 2010

Monte Carlo Production

- WHIZARD Monte Carlo is used to generate all 0,2,4,6-fermion and t quark dominated 8-fermion processes.
- 100% electron and positron polarization is assumed in all event generation. Arbitrary electron, positron polarization is simulated by properly combining data sets.
- Fully fragmented MC data sets are produced. PYTHIA is used for final state QED & QCD parton showering, fragmentation, particle decay.

For Each New Machine Parameter Set There are 4 Steps Needed to Create the Files Needed by our Beamstrahlung Simulation Code

- 1. Run Guinea-Pig on a new set of Machine Parameters
- 2. Determine how much Guinea-Pig output is needed for Guinea-Pig Integration jobs and copy data to files such as /nfs/slac/g/lcd/ilc_data/whizdata/ILC500/guinea-pig/SB2009_500_TF_extbunches/lumi/ilc500n_lumi_0x.dat
- 3. Submit Guinea-Pig MC Integration Jobs

/afs/slac/g/nld/whizard/ILC/guinea-pig_ini

4. Copy .grd files produced by Guinea-Pig MC Integration Jobs to the directory /nfs/slac/g/lcd/ilc_data3/whizdata/ whizard/guinea-pig/energy_spread and give them names lumi_linker_nnn, photons_beam1_linker_nnn, etc. where nnn is (our) 3 digit machine identifier.

	\mathbf{SM}	Final States	$egin{array}{c} 6 ext{-}\mathbf{fermion} \ \mathbf{e^+e^-} & ightarrow \end{array}$	$u_i \overline{u}_i u_j \overline{d}_j d_k \overline{u}_k$	125 total
0-fermion				$d_i \overline{d}_i u_j \overline{d}_j d_k \overline{u}_k$	150 total
$e^+e^- ightarrow$	$\gamma\gamma$			$u_i \overline{u}_i u_j \overline{u}_j u_k \overline{u}_k$	25 total
	777		1	$u_i \overline{u}_i u_j \overline{u}_j d_k \overline{d}_k$	65 total
	$\gamma\gamma\gamma\gamma$			$u_i \overline{u}_i d_j \overline{d}_j d_k \overline{d}_k$	75 total
	77777			$d_i \overline{d}_i d_j \overline{d}_j d_k \overline{d}_k$	56 total
2-fermion					
$e^+e^- ightarrow$	ff	f eq u	$\gamma\gamma ightarrow$	$u_j\overline{d}_jd_k\overline{u}_k$	25 total
	νυγ			$u_j \overline{u}_j u_k \overline{u}_k$	9 total
	$ u u \gamma \gamma$			$u_j\overline{u}_jd_k\overline{d}_k$	25 total
	ννγγγ			$d_j \overline{d}_j d_k \overline{d}_k$	21 total
$e^-\gamma ightarrow$	$e^-\gamma$		$e_L^-\gamma ightarrow$	$ u_e u_j \overline{u}_j d_k \overline{u}_k$	25 total
$\gamma e^+ ightarrow$	$e^+\gamma$			$ u_e d_j \overline{d}_j d_k \overline{u}_k$	30 total
			$e^-\gamma ightarrow$	$e^-u_j\overline{d}_jd_k\overline{u}_k$	20 total
4-fermion				$e^-u_j\overline{u}_ju_k\overline{u}_k$	10 total
$e^+e^- ightarrow$	νυννγ	6 total		$e^-u_j\overline{u}_jd_k\overline{d}_k$	20 total
	$u_j\overline{d}_jd_k\overline{u}_k$	25 total		$e^-d_j\overline{d}_jd_k\overline{d}_k$	21 total
		$ u_e e^+ e^- \overline{ u}_e$	$\gamma e^+_{R} ightarrow$	$\overline{ u}_e u_j \overline{d}_j u_k \overline{u}_k$	25 total
		$ u_e e^+ \mu^- \overline{ u}_\mu$		$\overline{ u}_e u_j \overline{d}_j d_k \overline{d}_k$	30 total
		$ u_e e^+ au^- \overline{ u}_ au$	$\gamma e^+ o$	$e^+u_j\overline{d}_jd_k\overline{u}_k$	20 total
		$ u_e e^+ d\overline{u}$		$e^+u_j\overline{u}_ju_k\overline{u}_k$	10 total
		• ·		$e^+u_j\overline{u}_jd_k\overline{d}_k$	20 total
		+		$e^+d_j\overline{d}_jd_k\overline{d}_k$	21 total
		$c\overline{s}s\overline{c}$	8-fermio	_	
	$u_j \overline{u}_j u_k \overline{u}_k$	9 total	8-termio	1	
	$u_j \overline{u}_j d_k \underline{d}_k$	25 total	_+	1717	
	$d_j d_j d_k d_k$	21 total	$e^+e^- ightarrow$	$f\overline{f}t\overline{t}$	
$\gamma\gamma ightarrow$	ff	8 total		17	
$e_L^-\gamma ightarrow$	$ u_e d_k \overline{u}_k$	5 total	$\gamma\gamma ightarrow$	$t\bar{t}$	
$e^-\gamma ightarrow$	$e^{-}f\overline{f}$	10 total	$e^-\gamma ightarrow$	$e^{-}t\bar{t}$	
$\gamma e^+_R ightarrow$	$\overline{ u}_e u_k \overline{d}_k$	5 total	+	$ u_e b \overline{t} $	
$\gamma e^+ ightarrow$	$e^+f\overline{f}$	10 total	$\gamma e^+ ightarrow$	$e^+t\overline{t}$	
				$\overline{ u}_e t\overline{b}$	

There are currently 14 MC production groups:

- 0-2-4-fermion
- 6-fermion/ddi-udj-duk
- 6-fermion/eminus-gamma
- 6-fermion/gamma-eplus
- 6-fermion/gamma-gamma
- 6-fermion/uui-udj-duk
- 6-fermion/zzz_1
- 6-fermion/zzz_2
- 8-fermion/
- bench-point-5
- ffh
- ffhh
- tesla_bosons
- tth

The production group directories are located in /afs/slac/g/nld/whizard/xxxx where xxxx=0-2-4-fermion e.g. (xxxx will stand for a production group from here on)

For each Production Group There are 5 Steps Needed to Produce (Raw) MC Stdhep Data Sets: (corresponding shell script is shown in italics)

- 1. Generate Executable
 - /nfs/slac/g/lcd/mc/prj/sw/dist/whizard/v1r4p0/whizard-v1r4p0/remake_process_class
- 2. Submit MC Integration Jobs /afs/slac/g/nld/whizard/ILC/multiple_whiz_ini
- 3. Repair MC Integration Jobs /afs/slac/g/nld/whizard/ILC/multiple_whiz_ini_cleanup
- 4. Submit MC Event Generation Jobs /afs/slac/g/nld/whizard/ILC/multiple_whiz_run
- 5. Repair MC Event Generation Jobs /afs/slac/g/nld/whizard/ILC/multiple_whiz_run_repair

1. Generate Executable

remake_process_class copies the file
xxxx/whizard.prc to WHIZARD's conf
directory, does 'make prg', and then copies the
results of the make to xxxx/results.

2. Submit MC Integration Jobs

multiple_whiz_ini loops through the processes in **xxxx/results/whizard.prc** and submits 4 batch jobs for each process (1 job for each initial state e⁺e⁻ helicity combination).

For each job a directory /afs/slac/g/nld/fa/mmmm/whizyyyyy is created where mmmm is the center-of-mass energy in GeV and yyyyy is a unique 5-digit job number.

multiple_whiz_ini uses the file
xxxx/results/multiple_cardswhiz_in
to build the batch job's whizard.in file

multiple_whiz_ini uses the file
/afs/slac/g/nld/whizard/ILC/iniwhiz
to build the batch job's executable script.

3. Repair MC Integration Jobs

multiple_whiz_ini_cleanup loops through the job output in the directories /afs/slac/g/nld/fa/mmmm/whiztttt through /afs/slac/g/nld/fa/mmmm/whizyyyyy and verifies that the integration was completed successfully. Here mmmm, ttttt, yyyyy are input arguments to the script.

If the integration failed then *multiple_whiz_ini_cleanup* resubmits the job. WHIZARD saves intermediate integration results, so the new job essentially picks up where the old one left off.

4. Submit MC Event Generation Jobs

multiple_whiz_run loops through the MC integration job output directories
 /afs/slac/g/nld/fa/mmmm/whizttttt through
/afs/slac/g/nld/fa/mmmm/whizyyyyy and submits a run job for every
 MC integration job which had a cross-section above some minimum value.

For each run job a directory

/afs/slac/g/nld/fa/mmmm/run_output/wkkkkk/run_01 is created where mmmm is the center-of-mass energy in GeV and kkkkk is the 5-digit MC integration job number.

multiple_whiz_run copies most of the files in the directory
/afs/slac/g/nld/fa/mmm/whizkkkkk into the directory
/afs/slac/g/nld/fa/mmmn/run_output/wkkkkk/run_01.
Parameters specific to event generation are added to the whizard.in file before it
is copied to /afs/slac/g/nld/fa/mmmn/run_output/wkkkkk/run_01.

multiple_whiz_run uses the file
/afs/slac/g/nld/whizard/ILC/runwhiz
to build the batch job's executable script.

5. Repair Event Generation Jobs

multiple_whiz_run_repair loops through the MC run job output directories
/afs/slac/g/nld/fa/mmmm/run_output/wttttt/run_01 through
/afs/slac/g/nld/fa/mmmm/run_output/wyyyyy/run_01 and verifies
that the jobs completed successfully. If the job failed multiple_whiz_run_repair
resubmits the job. If the job completed successfully but additional runs are required it
will submit new run jobs after creating directories of the form
nfs/slac/g/lcd/mc/mmmm/run_output/wkkkkk/run_03

nfs/slac/g/lcd/mc/mmmm/run output/wkkkkk/run nn

Within SiD 2 Additional Steps are Needed to Produce Derived Stdhep Files with Randomized Final States

1. Calculate start and end readout positions for each raw stdhep file given a desired beam polarization, final state composition, and luminosity

/afs/slac/g/nld/whizard/ILC/ inv_ab_stdhep_ascii_ini

2. Copy raw stdhep files on mstore to /nfs / disk, create necessary directories, and produce derived stdhep files with randomized final states

/afs/slac/g/nld/whizard/ILC/create_derived_files_ini