Super Conducting magnets for the Super Final Focus Doublet

Eugenio Paoloni INFN & Università di Pisa, Simona Bettoni (CERN), Marica Biagini, Pantaleo Raimondi(LNF), Mike Sullivan (SLAC)

Talk outline

- Super*B*: a short introduction
 - The collider & its final focus
- Final focus requirements & Constraints
 - Specifications
 - Why unconventional solutions are required?
 - Possible solutions
 - Future activities

SuperB

- Strong Physics case for building a new asymmetric e⁺e⁻ collider @ the Y(4S) peak aiming to reach 10³⁶ cm⁻²/s.
 (1 pb⁻¹/s)
- SuperB is one the flag ship programs of the Italian Ministry of the University & Research.
- SuperB is in the top priority list of the National Research Plan 2010-2013.
- Unfortunately the Sovereign debt crisis slowed down the funding and approval process of SuperB.

Machine parameters

	Units	HER	LER		
Release		Annecy March 2010			
Circumference	m	125	1258.4		
Frequency turn	Hz	2.38	2.38E+05		
# bunch		978			1 B
Frequency collision	Hz	2.33E+08			
Full crossing angle	Rad	0.066			RF
Energy	GeV	6.7	4.18		
Energy ratio		1.60			
β _x *	cm	2.6	3.2		
β_y^*	ст	0.0252	0.0206		
coupling		0.0025	0.0025		
ε _x	nm	2	2.4		
ε _y	pm	0.005	0.006		
Bunch length	cm	0.5	0.5		\mathbf{R}
Current	А	1.892	2.410		
# particles		5.08E+10	6.46E+10		e+
σχ	micron	7.21	8.76		200
σy	micron	0.035	0.035		• e-
Piwinsky angle		22.89	18.83		N.
Horizontal tune shift	%	0.21	0.33		1
Vertical tune shift	%	9.78	9.78		
Luminosity	Hz/cm^2	1.02E+36			and the second sec

FF

FF

TR layout: Nov. 2006

SuperB Interaction Region

Radiative Bhabha background

 QD0 magnetic axis must be placed near the incoming beam lines to keep Syncrhotron radiation fans away from the detector.

• The QD0 becomes a spectrometer for the off-energy particles produced by Radiative Bhabha interactions.

• The resulting e.m. showers are a big problem for the detectors.

IR layout 2009

Inside the detector

Synchrotron radiation

Mike Sullivan (SLAC) **SR power (Watts)** 854 425 100 732 2226 73 141 LER HER mm 0 446 919 -100 -200 └─ -3 -2 M. Sullivan Feb.13, 2009 SB_IT_ILC_P4_SR_3M -1 2 0 3 meters

The cold bore option is not viable since the energy deposited by synchrotron radiation from the upstream dipoles is order of hundreds of Watts.

Main points

- Mechanical/Magnetic requirements
 - Gradients: ~ 120 T/m & 52.2 T/m
 - Field quality order of the 10⁻⁵ @ 10 mm
 - Radius of the mechanical aperture: ~ 23 mm
- Available space for the SC windings: ~ 4 mm
 Operating temperature 1.9 K

QDO: conceptual cross section

Cross talk.

Only 8 mm for mechanical support and SC windings

Field quality requested by Pantaleo: 10⁻⁵ @ 10 mm

AML docet:

MOPAS055

Proceedings of PAC07, Albuquerque, New Mexico, USA

COMBINED FUNCTION MAGNETS USING DOUBLE-HELIX COILS *

C. Goodzeit, R. Meinke, M. Ball, Advanced Magnet Lab, Inc., Melbourne, FL 32901, U.S.A.

Figure 1. (Left) Layout of double helix winding. The axial field components of the 2 layers cancel each other and the total transverse field is enhanced. (Right) For the case of a dipole, the z coordinate of the conductor path is given

The double helix winding concept can be readily extended to produce pure higher order multipole magnets, and as we shall show, combinations of superimposed multipole fields. This can be seen from the general expression for the conductor path of a double-helix coil given by:

$$z(\theta) = \frac{h\theta}{2\pi} + A_0 \left(\sin\theta + \sum_{n=2}^N \varepsilon_n \sin(n\theta + \phi_n)\right) \quad (1)$$

where the geometric variables are described in Figure 1.

In simple words: given whatever a B_y field you need it is possible to design a coil to produce it.

Cross talk problem, algebraic solution

2D complex notation:

$$\begin{aligned} \zeta &\equiv x + i \ y \\ B &\equiv B_y + i \ B_x \end{aligned} \qquad B = k \ \int_0^{2\pi} d\varphi \ \frac{j_z(\varphi)}{\zeta - e^{i\varphi}} \end{aligned}$$

The algebraic relation:

$$\mathcal{G}(\zeta;\varphi) = \frac{1}{\zeta - e^{i\varphi}} = \frac{1}{\zeta} - \frac{1}{\zeta^2} \frac{1}{\frac{1}{\zeta} - e^{-i\varphi}} = \frac{1}{\zeta} - \frac{1}{\zeta^2} \overline{\mathcal{G}}\left(\frac{1}{\overline{\zeta}};\varphi\right)$$

relates the outside B field with the inside B field

$$B_{\rm out}(\zeta) = -\frac{1}{\zeta^2} \overline{B}_{\rm in}(\frac{1}{\overline{\zeta}}) + \frac{k}{\zeta} \int_0^{2\pi} j(\varphi) d\varphi$$

Functional equation to solve:

$$\begin{cases} B_{\text{R,in}}(\zeta) &= B_{\text{R,target}}(\zeta) + \frac{1}{(\zeta + \Delta)^2} \overline{B}_{\text{L,in}}(\frac{1}{\overline{\zeta} + \Delta}) \\ B_{\text{L,in}}(\zeta) &= B_{\text{L,target}}(\zeta) + \frac{1}{(\zeta - \Delta)^2} \overline{B}_{\text{R,in}}(\frac{1}{\overline{\zeta} - \Delta}) \\ - B_{\text{L,out}}(\zeta - \Delta) \end{cases}$$

Ampere law to determine the field source

$$j_z = \left[B_{\rm out}(e^{i\varphi}) - B_{\rm in}(e^{i\varphi})\right]e^{i\varphi}$$

1.0

The field configuration

And the windings shape

3D simulations: Tosca

A 3D model is generated with Mathematica following the previous recipe

The 3D model is simulated with Tosca

Field quality and maximum field on conductors predicted

Field quality optimization

We scan over α (the longitudinal scale of the modulation) and h (the step)

keeping the gradient constant.

From the field predicted by Tosca we evaluate the higher multipolar terms normalized to the quadrupole at tre reference radius

$$B_y(x - x_c, y = 0) = \sum_{k=0}^{\infty} b_k (x - x_c)^k$$
$$B_k \equiv \left. \frac{b_k (x - x_c)^k}{b_1 (x - x_c)} \right|_{x = \text{Ref. radius}}$$

Ø

Optimization results

Simona Bettoni

NORMALIZED MULTIPOLES	SCAI	N #4	SCAN #7	
@ x = ± 5 MM	CENTER	EXTREMITY	CENTER	EXTREMITY
B_2 (Sextupole)	-7.74 10 ⁻⁵	-6.28 10 ⁻⁵	-2.72 10 ⁻⁵	-1.36 10 ⁻⁵
B_3 (OCTUPOLE)	-1.09 10 ⁻⁵	-9.25 10 ⁻⁶	-1.33 10 ⁻⁵	-1.52 10 ⁻⁵

Asymmetric gradients

The gradient needed for the LER in the latest design is smaller than the one needed for the HER. The gradients ratio is order of the energies ratio ~ 7/4 (still to be optimized)

'Margin to quench

• The high required gradients are not feasible with present SC wires in the small space available for the windings

Quad

Simona's idea:

An external quadrupole can produce a big part of the field.

-3

Configuration advantages

	HER	LER	
Gradient (T/cm)	-1.191338	-0.5223842	
Magnetic axis position (mm)	22.0	-20.0	
Aperture (mm)	23.5		
Mechanical axis position (mm)	27.5		

 $2D: J_z(A/mm)$

The present status

3D simulation

Margin to quench

Margin to quench @ 4.2 K still too small for commercially available NbTi SC. 1.9K seems viable.

Special strands for high energy physics applications

ATLAS strand F306 Ø 1.30 mm Cu : NbTi = 1.15 Ic = 1700 A @ 5 T; 4.2 K

Typical NbTi properties and Cu/SC ratio = 1 assumed.

Conclusions

- A promising solution to satisfy the challenging requirements of the quadrupoles of the final doublets of SuperB had been presented
- The cross talk compensation scheme is able (from 3D simulations) to meet the field quality requirements
- The configuration with an external conventional magnet + a twin compensated pair significantly increases the margin to quench

Grazie

Margin to quench NbTi

$$J \leq J_c \approx \frac{C_0}{B} \times b^{\alpha} \times (1-b)^{\beta} \times (1-t^{1.7})^{\gamma}$$

(b	$\equiv \frac{B}{B_{c2}}$
]	t	$\equiv \frac{T}{T_{c20}}$
l	<i>B</i> _{<i>c</i>2}	$\equiv B_{c20} \times (1 - t^{1.7})^{\gamma}$

NbTi Parameters			
B _{c20} (T)	14.5		
T _{C0} (K)	9.2		
C_0 (kA T/mm ²)	23.8		
α	0.57		
β	0.9		
γ	1.9		

*L. Bottura, A practical fit for the critical surface of NbTi, IEEE Transactions on Applied Superconductivity, Vol. 10, no. 1, March 2000.