Hadronic interactions in the SiW ECAL (with the 2008 data)

Philippe Doublet, Michele Faucci-Giannelli, Roman Pöschl, François Richard for the CALICE Collaboration

Introduction

- 2008 FNAL data used
 - Pions of 2, 4, 6, 8 and
 10 GeV
 - Cuts on scintillator and Cherekov counters
- The SiW ECAL
 - $\sim 1\lambda_{I}$: more than half of the hadrons interact
 - 1x1 cm² pixels: tracking possibilities
 - 30 layers with 3 different
 W depths

Procedure

- 1. Follow the MIP track
- 2. Find the interaction layer
- 3. Distinguish the types of interactions
- → At low energies, finding the interaction and its type requires energy deposition and high granularity

Finding an interaction

 Looking at the energy profile in the ECAL
 1. For « strong » interactions E_i > Ecut , E_{i+1} > Ecut , E_{i+2} > Ecut

2. For interactions at smaller energies

$$\frac{E_i + E_{i+1}}{E_{i-1} + E_{i-2}} > \text{Fcut and } \frac{E_{i+1} + E_{i+2}}{E_{i-1} + E_{i-2}} > \text{Fcut}$$

Plus classification

First type: « FireBall »

Second type: « Pointlike »

New type introduced: « Scattered »

- Other non interacting events contain two kind of events
 - Type « Scattered »: pion scattering using the extrapolated incoming MIP and last outgoing hit 2 cells away or more → Interesting for Pflow !
 - Type « MIP »

Optimisation of the cuts (using MC)

3 parameters used:

- Standard deviation of the distribution
 « layer found – true »
- Interaction fraction = events found / events with an interaction
- Purity with non interacting events = events with no interaction found / events with no interaction
- Compromise between those 3 and comparison with David's method

After optimisation

 We care about the interactions found within +/- 1 layer (+/- 2 layers) w.r.t. the interaction layer in the MC

	+/- 1 layer	+/- 2	David +/- 2
2 GeV	56%	67%	28%
4 GeV	60%	73%	61%
6 GeV	62%	76%	69%
8 GeV	64%	78%	71%
10 GeV	72%	84%	76%

David Ward's results:

Ecut criteria made a bit more complex: 3 out of 4 layers must satisfy cut

Rates of interaction from 2 to 10 GeV: data vs MC (5 lists)

Mean shower radius

• Transverse size is calculated from the interaction layer (the first for non interacting events):

$$\langle \mathbf{r} \rangle_{\mathbf{E}} = \sqrt{\sigma_{\mathbf{E},\mathbf{x}}^2 + \sigma_{\mathbf{E},\mathbf{y}}^2}$$

0

$$\sigma_{\rm E,x}^2 = \frac{\sum_{\rm hits} x_{\rm hit}^2 E_{\rm hit}}{\sum_{\rm hits} E_{\rm hit}} - \left(\frac{\sum_{\rm hits} x_{\rm hit} E_{\rm hit}}{\sum_{\rm hits} E_{\rm hit}}\right)^2$$

All events with different energies

Longitudinal profiles

- Longitudinal profiles are drawn with 60 layers equivalent to those in the first stack (i.e. one layer in stack 2 is divided in 2 layers and one layer in stack 3 is divided in 3 layers)
- Layer 0 is the interaction layer (set to 0 for non interacting events)
- The energy deposited in the layer is decomposed in the MC between various secondary particles' contributions

All events at different energies

FireBall at 8 GeV for different lists

FireBall at 2 GeV for different lists

Pointlike at 2 GeV for different lists

Conclusion

- We combine energy and high granularity to classify hadronic interactions and even see them clearly
 - The mean shower radii agree very well
 - The longitudinal profiles show differencies between physics lists
 - 4 types of interaction allow to separate clearly the profiles and show points of improvement for the lists
- Showers of types « FireBall » and « Pointlike » to be investigated
- Type « Scattered » very promising for particle flow studies (to be improved – ex: angular distribution studies)
- Results stable obtained with official releases

Pointlike at 8 GeV for different lists

